TY - GEN
T1 - Design and analysis of soft pneumatic sleeve for ARM orthosis
AU - Singh, Gaurav
AU - Xiao, Chenzhang
AU - Krishnan, Girish
AU - Hsiao-Wecksler, Elizabeth
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - Patients that use crutches for ambulation experience forces as high as 50% of body weight and extreme extension angles at the wrist, which increases the risk of joint injury such as carpal tunnel syndrome. We have designed and fabricated a soft pneumatic sleeve to reduce the wrist loading by transferring part of the load to the forearm. The sleeve uses a Fiber Reinforced Elastomeric Enclosure (FREE). FREEs are soft pneumatic actuators that can generate force and moment upon inflation. We have used a contracting FREE, which is wrapped in a helical shape around the forearm as part of the sleeve. Upon actuation, it contracts in length and reduces in diameter, thereby generating a constricting force around the forearm. In this paper, we describe the modeling of the constricting force generated by the helical FREE. We can model the FREE as a string due to its negligible bending stiffness. The constriction force can be expressed in terms of the axial tensile force generated in the FREE upon actuation and the geometry of the helix. To obtain the axial force, we have used a model previously reported in literature that uses a constrained volume maximization formulation. We validate the string model by comparing with experimental results.
AB - Patients that use crutches for ambulation experience forces as high as 50% of body weight and extreme extension angles at the wrist, which increases the risk of joint injury such as carpal tunnel syndrome. We have designed and fabricated a soft pneumatic sleeve to reduce the wrist loading by transferring part of the load to the forearm. The sleeve uses a Fiber Reinforced Elastomeric Enclosure (FREE). FREEs are soft pneumatic actuators that can generate force and moment upon inflation. We have used a contracting FREE, which is wrapped in a helical shape around the forearm as part of the sleeve. Upon actuation, it contracts in length and reduces in diameter, thereby generating a constricting force around the forearm. In this paper, we describe the modeling of the constricting force generated by the helical FREE. We can model the FREE as a string due to its negligible bending stiffness. The constriction force can be expressed in terms of the axial tensile force generated in the FREE upon actuation and the geometry of the helix. To obtain the axial force, we have used a model previously reported in literature that uses a constrained volume maximization formulation. We validate the string model by comparing with experimental results.
UR - http://www.scopus.com/inward/record.url?scp=85007579706&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85007579706&partnerID=8YFLogxK
U2 - 10.1115/DETC2016-59836
DO - 10.1115/DETC2016-59836
M3 - Conference contribution
AN - SCOPUS:85007579706
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 40th Mechanisms and Robotics Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
Y2 - 21 August 2016 through 24 August 2016
ER -