Design and analysis of data management in scalable parallel scripting

Zhao Zhang, Daniel S. Katz, Justin M. Wozniak, Allan Espinosa, Ian Foster

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We seek to enable efficient large-scale parallel execution of applications in which a shared filesystem abstraction is used to couple many tasks. Such parallel scripting (many-task computing, MTC) applications suffer poor performance and utilization on large parallel computers because of the volume of filesystem I/O and a lack of appropriate optimizations in the shared filesystem. Thus, we design and implement a scalable MTC data management system that uses aggregated compute node local storage for more efficient data movement strategies. We co-design the data management system with the data-aware scheduler to enable dataflow pattern identification and automatic optimization. The framework reduces the time to solution of parallel stages of an astronomy data analysis application, Montage, by 83.2% on 512 cores; decreases the time to solution of a seismology application, CyberShake, by 7.9% on 2,048 cores; and delivers BLAST performance better than mpiBLAST at various scales up to 32,768 cores, while preserving the flexibility of the original BLAST application.

Original languageEnglish (US)
Title of host publication2012 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2012
DOIs
StatePublished - 2012
Externally publishedYes
Event2012 24th International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2012 - Salt Lake City, UT, United States
Duration: Nov 10 2012Nov 16 2012

Publication series

NameInternational Conference for High Performance Computing, Networking, Storage and Analysis, SC
ISSN (Print)2167-4329
ISSN (Electronic)2167-4337

Other

Other2012 24th International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2012
Country/TerritoryUnited States
CitySalt Lake City, UT
Period11/10/1211/16/12

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Software

Fingerprint

Dive into the research topics of 'Design and analysis of data management in scalable parallel scripting'. Together they form a unique fingerprint.

Cite this