TY - CONF
T1 - Descriptive Knowledge Graph in Biomedical Domain
AU - Zhu, Kerui
AU - Huang, Jie
AU - Chang, Kevin Chen Chuan
N1 - This material is based upon work supported by the National Science Foundation IIS 16-19302 and IIS 16-33755, Zhejiang University ZJU Research 083650, IBM-Illinois Center for Cognitive Computing Systems Research (C3SR) and IBM-Illinois Discovery Accelerator Institute (IIDAI), grants from eBay and Microsoft Azure, UIUC OVCR CCIL Planning Grant 434S34, UIUC CSBS Small Grant 434C8U, and UIUC New Frontiers Initiative. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the funding agencies.
This material is based upon work supported by the National Science Foundation IIS 16-19302 and IIS 16-33755, Zhejiang University ZJU Research 083650, IBM-Illinois Center for Cognitive Computing SystemsResearch (C3SR) and IBM-Illinois Discovery Accelerator Institute (IIDAI), grants from eBay and Microsoft Azure, UIUC OVCR CCIL Planning Grant 434S34, UIUC CSBS Small Grant 434C8U, and UIUC New Frontiers Initiative. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the funding agencies.
PY - 2023
Y1 - 2023
N2 - We present a novel system that automatically extracts and generates informative and descriptive sentences from the biomedical corpus and facilitates the efficient search for relational knowledge. Unlike previous search engines or exploration systems that retrieve unconnected passages, our system organizes descriptive sentences as a relational graph, enabling researchers to explore closely related biomedical entities (e.g., diseases treated by a chemical) or indirectly connected entities (e.g., potential drugs for treating a disease). Our system also uses ChatGPT and a fine-tuned relation synthesis model to generate concise and reliable descriptive sentences from retrieved information, reducing the need for extensive human reading effort. With our system, researchers can easily obtain both high-level knowledge and detailed references and interactively steer to the information of interest. We spotlight the application of our system in COVID-19 research, illustrating its utility in areas such as drug repurposing and literature curation.
AB - We present a novel system that automatically extracts and generates informative and descriptive sentences from the biomedical corpus and facilitates the efficient search for relational knowledge. Unlike previous search engines or exploration systems that retrieve unconnected passages, our system organizes descriptive sentences as a relational graph, enabling researchers to explore closely related biomedical entities (e.g., diseases treated by a chemical) or indirectly connected entities (e.g., potential drugs for treating a disease). Our system also uses ChatGPT and a fine-tuned relation synthesis model to generate concise and reliable descriptive sentences from retrieved information, reducing the need for extensive human reading effort. With our system, researchers can easily obtain both high-level knowledge and detailed references and interactively steer to the information of interest. We spotlight the application of our system in COVID-19 research, illustrating its utility in areas such as drug repurposing and literature curation.
UR - http://www.scopus.com/inward/record.url?scp=85183295018&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85183295018&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:85183295018
SP - 462
EP - 470
T2 - 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Y2 - 6 December 2023 through 10 December 2023
ER -