Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows

Jaco H. Baas, James L. Best, Jeffrey Peakall

Research output: Contribution to journalArticlepeer-review


Flows with high suspended sediment concentrations are common in many sedimentary environments, and their flow properties may show a transitional behaviour between fully turbulent and quasi-laminar plug flows. The characteristics of these transitional flows are known to be a function of both clay concentration and type, as well as the applied fluid stress, but so far the interaction of these transitional flows with a loose sediment bed has received little attention. Information on this type of interaction is essential for the recognition and prediction of sedimentary structures formed by cohesive transitional flows in, for example, fluvial, estuarine and deep-marine deposits. This paper investigates the behaviour of rapidly decelerated to steady flows that contain a mixture of sand, silt and clay, and explores the effect of different clay (kaolin) concentrations on the dynamics of flow over a mobile bed, and the bedforms and stratification produced. Experiments were conducted in a recirculating slurry flume capable of transporting high clay concentrations. Ultrasonic Doppler velocity profiling was used to measure the flow velocity within these concentrated suspension flows. The development of current ripples under decelerated flows of differing kaolin concentration was documented and evolution of their height, wavelength and migration rate quantified. This work confirms past work over smooth, fixed beds which showed that, as clay concentration rises, a distinct sequence of flow types is generated: turbulent flow, turbulence-enhanced transitional flow, lower transitional plug flow, upper transitional plug flow and a quasi-laminar plug flow. Each of these flow types produces an initial flat bed upon rapid flow deceleration, followed by reworking of these deposits through the development of current ripples during the subsequent steady flow in turbulent flow, turbulence-enhanced transitional flow and lower transitional plug flow. The initial flat beds are structureless, but have diagnostic textural properties, caused by differential settling of sand, silt and cohesive mud, which forms characteristic bipartite beds that initially consist of sand overlain by silt or clay. As clay concentration in the formative flow increases, ripples first increase in mean height and wavelength under turbulence-enhanced transitional flow and lower transitional plug-flow regimes, which is attributed to the additional turbulence generated under these flows that subsequently causes greater lee side erosion. As clay concentration increases further from a lower transitional plug flow, ripples cease to exist under the upper transitional plug flow and quasi-laminar plug flow conditions investigated herein. This disappearance of ripples appears due to both turbulence suppression at higher clay concentrations, as well as the increasing shear strength of the bed sediment that becomes more difficult to erode as clay concentration increases. The stratification within the ripples formed after rapid deceleration of the transitional flows reflects the availability of sediment from the bipartite bed. The exact nature of the ripple cross-stratification in these flows is a direct function of the duration of the formative flow and the texture of the initial flat bed, and ripples do not form in cohesive flows with a Reynolds number smaller than ca 12000. Examples are given of how the unique properties of the current ripples and plane beds, developing below decelerated transitional flows, could aid in the interpretation of depositional processes in modern and ancient sediments. This interpretation includes a new model for hybrid beds that explains their formation in terms of a combination of vertical grain-size segregation and longitudinal flow transformation.

Original languageEnglish (US)
Pages (from-to)1953-1987
Number of pages35
Issue number7
StatePublished - Dec 2011


  • Bed shear strength
  • Bedforms
  • Clay suspensions
  • Cohesion
  • Current ripples
  • Flow deceleration
  • Hybrid beds
  • Turbulence modulation

ASJC Scopus subject areas

  • Geology
  • Stratigraphy


Dive into the research topics of 'Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows'. Together they form a unique fingerprint.

Cite this