TY - CHAP
T1 - Depositional and diagenetic history of travertine deposited within the Anio Novus aqueduct of ancient Rome
AU - Sivaguru, Mayandi
AU - Fouke, Kyle W.
AU - Keenan-Jones, Duncan
AU - Motta, Davide
AU - Garcia, Marcelo Horacio
AU - Fouke, Bruce W.
N1 - Funding Information:
This research was completed in recognition of, and appreciation for, the innumerable personal and professional lifetime achievements of Walter Alvarez at the University of California, Berkeley. People around the world have had their curiosity ignited, and their fundamental approach to scientific inquiry redirected, by Walter’s avant-garde research vision, engaged teaching, and inspirational writing. Walter infused his passion for Italian language, food, art, music, and history into all of us who were members of his Renaissance Geology research group. We gratefully acknowledge that permission to conduct this research was provided by the Soprintendenza per i Beni Archeologici del Lazio (especially Dott. Zaccaria Mari) and the Soprintendenza Speciale per i Beni Archeologici di Roma (especially Arch. Giacomo Restante). This research was supported by the Andrew W. Mellon Foundation through the Illinois Program for Research in the Humanities, the Italian Government, the late William and Janet Gale, Macquarie University, the British Academy and British School in Rome, the Ed and Barbara Weil Fund for Universal Biomineralization at the University of Illinois Urbana-Champaign, and the National Aeronautics and Space Administration (NASA) Astrobiology Institute (cooperative agreement NNA13AA91A) issued through the Science Mission Directorate. The support of the Chester and Helen Siess Professorship and the M.T. Geoffrey Yeh Chair in Civil and Environmental Engineering at the University of Illinois Urbana-Champaign is also gratefully acknowledged. We also thank Glenn Fried for modifying and enlarging the cathodoluminescence stage and assisting with cathodoluminescence petrography, Charlie Ker-ans and Jeff Trop for invaluable scientific discussions, and Julia Waldsmith and Megan Ward for assistance in the field and laboratory. Conclusions and interpretations presented in this study are those of the authors and do not necessarily reflect those of the funding agencies and permitting entities.
Funding Information:
This research was completed in recognition of, and appreciation for, the innumerable personal and professional lifetime achievements of Walter Alvarez at the University of California, Berkeley. People around the world have had their curiosity ignited, and their fundamental approach to scientific inquiry redirected, by Walter's avant-garde research vision, engaged teaching, and inspirational writing. Walter infused his passion for Italian language, food, art, music, and history into all of us who were members of his Renaissance Geology research group. We gratefully acknowledge that permission to conduct this research was provided by the Soprintendenza per i Beni Archeologici del Lazio (especially Dott. Zaccaria Mari) and the Soprintendenza Speciale per i Beni Archeologici di Roma (especially Arch. Giacomo Restante). This research was supported by the Andrew W. Mellon Foundation through the Illinois Program for Research in the Humanities, the Italian Government, the late William and Janet Gale, Macquarie University, the British Academy and British School in Rome, the Ed and Barbara Weil Fund for Universal Biomineralization at the University of Illinois Urbana-Champaign, and the National Aeronautics and Space Administration (NASA) Astrobiology Institute (cooperative agreement NNA13AA91A) issued through the Science Mission Directorate. The support of the Chester and Helen Siess Professorship and the M.T. Geoffrey Yeh Chair in Civil and Environmental Engineering at the University of Illinois Urbana-Champaign is also gratefully acknowledged. We also thank Glenn Fried for modifying and enlarging the cathodoluminescence stage and assisting with cathodoluminescence petrography, Charlie Kerans and Jeff Trop for invaluable scientific discussions, and Julia Waldsmith and Megan Ward for assistance in the field and laboratory. Conclusions and interpretations presented in this study are those of the authors and do not necessarily reflect those of the funding agencies and permitting entities.
Publisher Copyright:
© 2022 The Authors. Gold Open Access: This chapter is published under the terms of the CC-BY license and is available open access on www.gsapubs.org.
PY - 2022/6/21
Y1 - 2022/6/21
N2 - Travertine deposits preserved within ancient aqueduct channels record information about the hydrology, temperature, and chemistry of the flowing water from which they precipitated. However, travertine is also chemically reactive and susceptible to freshwater diagenesis, which can alter its original composition and impact reconstructions of aqueduct operation, maintenance, and climate. Hydraulic reconstructions, in combination with a suite of high-resolution optical, laser, electron, and X-ray microscopy analyses, have been used to determine the original crystalline structure and diagenetic alteration of travertine deposited in the Anio Novus aqueduct built in A.D. 38-52 at Roma Vecchia. Age-equivalent travertine deposits, precipitated directly on the mortar-covered floor at upstream and downstream sites along a 140-m-long continuous section of the Anio Novus channel, exhibit consistent crystalline textures and stratigraphic layering. This includes aggrading, prograding, and retrograding sets of travertine linguoid, sinuous, and hummocky crystal growth ripples, as well as sand lags with coated siliciclastic grains deposited on the lee slope of ripple crests. The original aqueduct travertine, which is similar to travertine formed in analogous natural environments, is composed of shrub-like, dendritically branching aggregates of 1-3-μm-diameter euhedral calcite crystals. Dark brown organic matter-rich laminae, formed by microbial biofilms and plant debris, create stratigraphic sequences of high-frequency, dark-light layering. This hydraulic and petrographic evidence suggests that large, radiaxial calcites diagenetically replaced the original aqueduct travertine shrubs, forming upward-branching replacement crystals that crosscut the biofilm laminae. While this diagenetic process destroyed the original crystalline fabric of the calcite shrubs, the entombed biofilm laminae were mimetically preserved. These integrated approaches create the type of depositional and diagenetic framework required for future chemostratigraphic analyses of travertine deposited in the Anio Novus and other ancient water conveyance and storage systems around the world, from which ancient human activity and climatic change can be more accurately reconstructed.
AB - Travertine deposits preserved within ancient aqueduct channels record information about the hydrology, temperature, and chemistry of the flowing water from which they precipitated. However, travertine is also chemically reactive and susceptible to freshwater diagenesis, which can alter its original composition and impact reconstructions of aqueduct operation, maintenance, and climate. Hydraulic reconstructions, in combination with a suite of high-resolution optical, laser, electron, and X-ray microscopy analyses, have been used to determine the original crystalline structure and diagenetic alteration of travertine deposited in the Anio Novus aqueduct built in A.D. 38-52 at Roma Vecchia. Age-equivalent travertine deposits, precipitated directly on the mortar-covered floor at upstream and downstream sites along a 140-m-long continuous section of the Anio Novus channel, exhibit consistent crystalline textures and stratigraphic layering. This includes aggrading, prograding, and retrograding sets of travertine linguoid, sinuous, and hummocky crystal growth ripples, as well as sand lags with coated siliciclastic grains deposited on the lee slope of ripple crests. The original aqueduct travertine, which is similar to travertine formed in analogous natural environments, is composed of shrub-like, dendritically branching aggregates of 1-3-μm-diameter euhedral calcite crystals. Dark brown organic matter-rich laminae, formed by microbial biofilms and plant debris, create stratigraphic sequences of high-frequency, dark-light layering. This hydraulic and petrographic evidence suggests that large, radiaxial calcites diagenetically replaced the original aqueduct travertine shrubs, forming upward-branching replacement crystals that crosscut the biofilm laminae. While this diagenetic process destroyed the original crystalline fabric of the calcite shrubs, the entombed biofilm laminae were mimetically preserved. These integrated approaches create the type of depositional and diagenetic framework required for future chemostratigraphic analyses of travertine deposited in the Anio Novus and other ancient water conveyance and storage systems around the world, from which ancient human activity and climatic change can be more accurately reconstructed.
UR - http://www.scopus.com/inward/record.url?scp=85143849145&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85143849145&partnerID=8YFLogxK
U2 - 10.1130/2022.2557(26)
DO - 10.1130/2022.2557(26)
M3 - Chapter
SN - 9780813725574
T3 - GSA Special Papers
SP - 541
EP - 569
BT - From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid
A2 - Koeberl, Christian
A2 - Claeys, Philippe
A2 - Montanari, Alessandro
PB - Geological Society of America
ER -