TY - GEN
T1 - Dense 3D Reconstruction for Visual Tunnel Inspection using Unmanned Aerial Vehicle
AU - Pahwa, Ramanpreet Singh
AU - Chan, Kennard Yanting
AU - Bai, Jiamin
AU - Saputra, Vincensius Billy
AU - Do, Minh N.
AU - Foong, Shaohui
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/11
Y1 - 2019/11
N2 - Advances in Unmanned Aerial Vehicle (UAV) opens venues for application such as tunnel inspection. Owing to its versatility to fly inside the tunnels, it can quickly identify defects and potential problems related to safety. However, long tunnels, especially with repetitive or uniform structures pose a significant problem for UAV navigation. Furthermore, post-processing visual data from the camera mounted on the UAV is required to generate useful information for the inspection task. In this work, we design a UAV with a single rotating camera to accomplish the task. Compared to other platforms, our solution can fit the stringent requirement for tunnel inspection, in terms of battery life, size and weight. While the current state-of-the-art can estimate camera pose and 3D geometry from a sequence of images, they assume large overlap, small rotational motion, and many distinct matching points between images. These assumptions severely limit their effectiveness in tunnel-like scenarios where the camera has erratic or large rotational motion, such as the one mounted on the UAV. This paper presents a novel solution which exploits Structure-from-Motion, Bundle Adjustment, and available geometry priors to robustly estimate camera pose and automatically reconstruct a fully-dense 3D scene using the least possible number of images in various challenging tunnel-like environments. We validate our system with both Virtual Reality application and experimentation with a real dataset. The results demonstrate that the proposed reconstruction along with texture mapping allows for remote navigation and inspection of tunnel-like environments, even those which are inaccessible for humans.
AB - Advances in Unmanned Aerial Vehicle (UAV) opens venues for application such as tunnel inspection. Owing to its versatility to fly inside the tunnels, it can quickly identify defects and potential problems related to safety. However, long tunnels, especially with repetitive or uniform structures pose a significant problem for UAV navigation. Furthermore, post-processing visual data from the camera mounted on the UAV is required to generate useful information for the inspection task. In this work, we design a UAV with a single rotating camera to accomplish the task. Compared to other platforms, our solution can fit the stringent requirement for tunnel inspection, in terms of battery life, size and weight. While the current state-of-the-art can estimate camera pose and 3D geometry from a sequence of images, they assume large overlap, small rotational motion, and many distinct matching points between images. These assumptions severely limit their effectiveness in tunnel-like scenarios where the camera has erratic or large rotational motion, such as the one mounted on the UAV. This paper presents a novel solution which exploits Structure-from-Motion, Bundle Adjustment, and available geometry priors to robustly estimate camera pose and automatically reconstruct a fully-dense 3D scene using the least possible number of images in various challenging tunnel-like environments. We validate our system with both Virtual Reality application and experimentation with a real dataset. The results demonstrate that the proposed reconstruction along with texture mapping allows for remote navigation and inspection of tunnel-like environments, even those which are inaccessible for humans.
UR - http://www.scopus.com/inward/record.url?scp=85080324828&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85080324828&partnerID=8YFLogxK
U2 - 10.1109/IROS40897.2019.8967577
DO - 10.1109/IROS40897.2019.8967577
M3 - Conference contribution
AN - SCOPUS:85080324828
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 7025
EP - 7032
BT - 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
Y2 - 3 November 2019 through 8 November 2019
ER -