TY - GEN
T1 - Demo-Net
T2 - 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019
AU - Wu, Jun
AU - He, Jingrui
AU - Xu, Jiejun
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery.
PY - 2019/7/25
Y1 - 2019/7/25
N2 - Graph data widely exist in many high-impact applications. Inspired by the success of deep learning in grid-structured data, graph neural network models have been proposed to learn powerful node-level or graph-level representation. However, most of the existing graph neural networks suffer from the following limitations: (1) there is limited analysis regarding the graph convolution properties, such as seed-oriented, degree-aware and order-free; (2) the node's degree-specific graph structure is not explicitly expressed in graph convolution for distinguishing structure-aware node neighborhoods; (3) the theoretical explanation regarding the graph-level pooling schemes is unclear. To address these problems, we propose a generic degree-specific graph neural network named DEMO-Net motivated by Weisfeiler-Lehman graph isomorphism test that recursively identifies 1-hop neighborhood structures. In order to explicitly capture the graph topology integrated with node attributes, we argue that graph convolution should have three properties: seed-oriented, degree-aware, order-free. To this end, we propose multi-task graph convolution where each task represents node representation learning for nodes with a specific degree value, thus leading to preserving the degree-specific graph structure. In particular, we design two multi-task learning methods: degree-specific weight and hashing functions for graph convolution. In addition, we propose a novel graph-level pooling/readout scheme for learning graph representation provably lying in a degree-specific Hilbert kernel space. The experimental results on several node and graph classification benchmark data sets demonstrate the effectiveness and efficiency of our proposed DEMO-Net over state-of-the-art graph neural network models.
AB - Graph data widely exist in many high-impact applications. Inspired by the success of deep learning in grid-structured data, graph neural network models have been proposed to learn powerful node-level or graph-level representation. However, most of the existing graph neural networks suffer from the following limitations: (1) there is limited analysis regarding the graph convolution properties, such as seed-oriented, degree-aware and order-free; (2) the node's degree-specific graph structure is not explicitly expressed in graph convolution for distinguishing structure-aware node neighborhoods; (3) the theoretical explanation regarding the graph-level pooling schemes is unclear. To address these problems, we propose a generic degree-specific graph neural network named DEMO-Net motivated by Weisfeiler-Lehman graph isomorphism test that recursively identifies 1-hop neighborhood structures. In order to explicitly capture the graph topology integrated with node attributes, we argue that graph convolution should have three properties: seed-oriented, degree-aware, order-free. To this end, we propose multi-task graph convolution where each task represents node representation learning for nodes with a specific degree value, thus leading to preserving the degree-specific graph structure. In particular, we design two multi-task learning methods: degree-specific weight and hashing functions for graph convolution. In addition, we propose a novel graph-level pooling/readout scheme for learning graph representation provably lying in a degree-specific Hilbert kernel space. The experimental results on several node and graph classification benchmark data sets demonstrate the effectiveness and efficiency of our proposed DEMO-Net over state-of-the-art graph neural network models.
KW - Degree-specific Convolution
KW - Graph Isomorphism Test
KW - Graph Neural Network
KW - Multi-task Learning
UR - http://www.scopus.com/inward/record.url?scp=85071188809&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071188809&partnerID=8YFLogxK
U2 - 10.1145/3292500.3330950
DO - 10.1145/3292500.3330950
M3 - Conference contribution
AN - SCOPUS:85071188809
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 406
EP - 415
BT - KDD 2019 - Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
Y2 - 4 August 2019 through 8 August 2019
ER -