Demagnetization protocols for frustrated interacting nanomagnet arrays

R. F. Wang, J. Li, W. McConville, C. Nisoli, X. Ke, J. W. Freeland, V. Rose, M. Grimsditch, P. Lammert, V. H. Crespi, P. Schiffer

Research output: Contribution to journalArticlepeer-review

Abstract

We report a study of demagnetization protocols for frustrated arrays of interacting single-domain permalloy nanomagnets by rotating the arrays in a changing magnetic field. The most effective demagnetization is achieved by not only stepping the field strength down while the sample is rotating, but also by combining each field step with alternation in the field direction. By contrast, linearly decreasing the field strength or stepping the field down without alternating the field direction leaves the arrays with a larger remanent magnetic moment. These results suggest that nonmonotonic variations in field magnitude around and below the coercive field are important for the demagnetization process.

Original languageEnglish (US)
Article number09J104
JournalJournal of Applied Physics
Volume101
Issue number9
DOIs
StatePublished - 2007

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Demagnetization protocols for frustrated interacting nanomagnet arrays'. Together they form a unique fingerprint.

Cite this