Delay composition in preemptive and non-preemptive real-time pipelines

Praveen Jayachandran, Tarek Abdelzaher

Research output: Contribution to journalArticlepeer-review

Abstract

Uniprocessor schedulability theory made great strides, in part, due to the simplicity of composing the delay of a job from the execution times of higher-priority jobs that preempt it. In this paper, we bound the end-to-end delay of a job in a multistage pipeline as a function of job execution times on different stages under preemptive as well as non-preemptive scheduling. We show that the end-to-end delay is bounded by that of a single virtual "bottleneck" stage plus a small additive component. This contribution effectively transforms the pipeline into a single stage system. The wealth of schedulability analysis techniques derived for uniprocessors can then be applied to decide the schedulability of the pipeline. The transformation does not require imposing artificial per-stage deadlines, but rather models the pipeline as a whole and uses the end-to-end deadlines directly in the single-stage analysis. It also does not make assumptions on job arrival patterns or periodicity and thus can be applied to periodic and aperiodic tasks alike. We show through simulations that this approach outperforms previous pipeline schedulability tests except for very short pipelines or when deadlines are sufficiently large. The reason lies in the way we account for execution overlap among stages. We discuss how previous approaches account for overlap and point out interesting differences that lead to different performance advantages in different cases. Further, we also show that in certain cases non-preemptive scheduling can result in higher system utilization than preemptive scheduling in pipelined systems. We hope that the pipeline delay composition rule, derived in this paper, may be a step towards a general schedulability analysis foundation for large distributed systems.

Original languageEnglish (US)
Pages (from-to)290-320
Number of pages31
JournalReal-Time Systems
Volume40
Issue number3
DOIs
StatePublished - Dec 2008

Keywords

  • Delay composition
  • End-to-end delay
  • Pipelined distributed systems
  • Schedulability

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Computer Science Applications
  • Computer Networks and Communications
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Delay composition in preemptive and non-preemptive real-time pipelines'. Together they form a unique fingerprint.

Cite this