TY - JOUR
T1 - Dehalogenation of the herbicides bromoxynil (3,5-dibromo-4- hydroxybenzonitrile) and ioxynil (3,5-diiodino-4-hydroxybenzonitrile) by Desulfitobacterium chlororespirans
AU - Cupples, Alison M.
AU - Sanford, Robert A.
AU - Sims, Gerald K.
PY - 2005/7
Y1 - 2005/7
N2 - Desulfitobacterium chlororespirans has been shown to grow by coupling the oxidation of lactate to the metabolic reductive dehalogenation of ortho chlorines on polysubstituted phenols. Here, we examine the ability of D. chlororespirans to debrominate and deiodinate the polysubstituted herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4- hydroxybenzonitrile), and the bromoxynil metabolite 3,5-dibromo-4- hydroxybenzoate (DBHB). Stoichiometric debromination of bromoxynil to 4-cyanophenol and DBHB to 4-hydroxybenzoate occurred. Further, bromoxynil (35 to 75 μM) and DBHB (250 to 260 μM) were used as electron acceptors for growth. Doubling times for growth (means ± standard deviations for triplicate cultures) on bromoxynil (18.4 ± 5.2 h) and DBHB (11.9 ± 1.4 h), determined by rate of [14C] lactate uptake into biomass, were similar to those previously reported for this microorganism during growth on pyruvate (15.4 h). In contrast, ioxynil was not deiodinated when added alone or when added with bromoxynil; however, ioxynil dehalogenation, with stoichiometric conversion to 4-cyanophenol, was observed when the culture was amended with 3-chloro-4-hydroxybenzoate (a previously reported electron acceptor). To our knowledge, this is the first direct report of deiodination by a bacterium in the Desulfitobacterium genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil. This research provides valuable insights into the substrate range of D. chlororespirans.
AB - Desulfitobacterium chlororespirans has been shown to grow by coupling the oxidation of lactate to the metabolic reductive dehalogenation of ortho chlorines on polysubstituted phenols. Here, we examine the ability of D. chlororespirans to debrominate and deiodinate the polysubstituted herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4- hydroxybenzonitrile), and the bromoxynil metabolite 3,5-dibromo-4- hydroxybenzoate (DBHB). Stoichiometric debromination of bromoxynil to 4-cyanophenol and DBHB to 4-hydroxybenzoate occurred. Further, bromoxynil (35 to 75 μM) and DBHB (250 to 260 μM) were used as electron acceptors for growth. Doubling times for growth (means ± standard deviations for triplicate cultures) on bromoxynil (18.4 ± 5.2 h) and DBHB (11.9 ± 1.4 h), determined by rate of [14C] lactate uptake into biomass, were similar to those previously reported for this microorganism during growth on pyruvate (15.4 h). In contrast, ioxynil was not deiodinated when added alone or when added with bromoxynil; however, ioxynil dehalogenation, with stoichiometric conversion to 4-cyanophenol, was observed when the culture was amended with 3-chloro-4-hydroxybenzoate (a previously reported electron acceptor). To our knowledge, this is the first direct report of deiodination by a bacterium in the Desulfitobacterium genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil. This research provides valuable insights into the substrate range of D. chlororespirans.
UR - http://www.scopus.com/inward/record.url?scp=22144480319&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=22144480319&partnerID=8YFLogxK
U2 - 10.1128/AEM.71.7.3741-3746.2005
DO - 10.1128/AEM.71.7.3741-3746.2005
M3 - Article
C2 - 16000784
AN - SCOPUS:22144480319
SN - 0099-2240
VL - 71
SP - 3741
EP - 3746
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 7
ER -