DefRec: Establishing Physical Function Virtualization to Disrupt Reconnaissance of Power Grids' Cyber-Physical Infrastructures

Hui Lin, Jianing Zhuang, Yih Chun Hu, Huayu Zhou

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Reconnaissance is critical for adversaries to prepare attacks causing physical damage in industrial control systems (ICS) like smart power grids. Disrupting reconnaissance is challenging. The state-of-the-art moving target defense (MTD) techniques based on mimicking and simulating system behaviors do not consider the physical infrastructure of power grids and can be easily identified. To overcome these challenges, we propose physical function virtualization (PFV) that “hooks” network interactions with real physical devices and uses these real devices to build lightweight virtual nodes that follow the actual implementation of network stacks, system invariants, and physical state variations in the real devices. On top of PFV, we propose DefRec, a defense mechanism that significantly increases the effort required for an adversary to infer the knowledge of power grids' cyber-physical infrastructures. By randomizing communications and crafting decoy data for virtual nodes, DefRec can mislead adversaries into designing damage-free attacks. We implement PFV and DefRec in the ONOS network operating system and evaluate them in a cyber-physical testbed, using real devices from different vendors and HP physical switches to simulate six power grids. The experimental results show that with negligible overhead, PFV can accurately follow the behavior of real devices. DefRec can delay adversaries' reconnaissance for more than 100 years by adding a number of virtual nodes less than or equal to 20% of the number of real devices.

Original languageEnglish (US)
Title of host publication27th Annual Network and Distributed System Security Symposium, NDSS 2020
PublisherThe Internet Society
ISBN (Electronic)1891562614, 9781891562617
DOIs
StatePublished - 2020
Event27th Annual Network and Distributed System Security Symposium, NDSS 2020 - San Diego, United States
Duration: Feb 23 2020Feb 26 2020

Publication series

Name27th Annual Network and Distributed System Security Symposium, NDSS 2020

Conference

Conference27th Annual Network and Distributed System Security Symposium, NDSS 2020
Country/TerritoryUnited States
CitySan Diego
Period2/23/202/26/20

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Control and Systems Engineering
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'DefRec: Establishing Physical Function Virtualization to Disrupt Reconnaissance of Power Grids' Cyber-Physical Infrastructures'. Together they form a unique fingerprint.

Cite this