Defect Analysis and Cost-Effective Resilience Architecture for Future DRAM Devices

Sanguhn Cha, O. Seongil, Hyunsung Shin, Sangjoon Hwang, Kwangil Park, Seong Jin Jang, Joo Sun Choi, Gyo Young Jin, Young Hoon Son, Hyunyoon Cho, Jung Ho Ahn, Nam Sung Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Technology scaling has continuously improved the density, performance, energy efficiency, and cost of DRAM-based main memory systems. Starting from sub-20nm processes, however, the industry began to pay considerably higher costs to screen and manage notably increasing defective cells. The traditional technique, which replaces the rows/columns containing faulty cells with spare rows/columns, has been able to cost-effectively repair the defective cells so far, but it will become unaffordable soon because an excessive number of spare rows/columns are required to manage the increasing number of defective cells. This necessitates a synergistic application of an alternative resilience technique such as In-DRAM ECC with the traditional one. Through extensive measurement and simulation, we first identify that aggressive miniaturization makes DRAM cells more sensitive to random telegraph noise or variable retention time, which is dominantly manifested as a surge in randomly scattered single-cell faults. Second, we advocate using In-DRAM ECC to overcome the DRAM scaling challenges and architect In-DRAM ECC to accomplish high area efficiency and minimal performance degradation. Moreover, we show that advancement in process technology reduces decoding/correction time to a small fraction of DRAM access time, and that the throughput penalty of a write operation due to an additional read for a parity update is mostly overcome by the multi-bank structure and long burst writes that span an entire In-DRAM ECC codeword. Lastly, we demonstrate that system reliability with modern rank-level ECC schemes such as single device data correction is further improved by hundred million times with the proposed In-DRAM ECC architecture.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE 23rd Symposium on High Performance Computer Architecture, HPCA 2017
PublisherIEEE Computer Society
Number of pages12
ISBN (Electronic)9781509049851
StatePublished - May 5 2017
Event23rd IEEE Symposium on High Performance Computer Architecture, HPCA 2017 - Austin, United States
Duration: Feb 4 2017Feb 8 2017

Publication series

NameProceedings - International Symposium on High-Performance Computer Architecture
ISSN (Print)1530-0897


Other23rd IEEE Symposium on High Performance Computer Architecture, HPCA 2017
Country/TerritoryUnited States


  • DRAM
  • long-burst writes
  • resilience
  • single-cell faults

ASJC Scopus subject areas

  • Hardware and Architecture


Dive into the research topics of 'Defect Analysis and Cost-Effective Resilience Architecture for Future DRAM Devices'. Together they form a unique fingerprint.

Cite this