Deeppruner: Learning Efficient Stereo Matching via Differentiable Patchmatch

Shivam Duggal, Shenlong Wang, Wei Chiu Ma, Rui Hu, Raquel Urtasun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Our goal is to significantly speed up the runtime of current state-of-the-art stereo algorithms to enable real-time inference. Towards this goal, we developed a differentiable PatchMatch module that allows us to discard most disparities without requiring full cost volume evaluation. We then exploit this representation to learn which range to prune for each pixel. By progressively reducing the search space and effectively propagating such information, we are able to efficiently compute the cost volume for high likelihood hypotheses and achieve savings in both memory and computation.Finally, an image guided refinement module is exploited to further improve the performance. Since all our components are differentiable, the full network can be trained end-to-end. Our experiments show that our method achieves competitive results on KITTI and SceneFlow datasets while running in real-time at 62ms.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4383-4392
Number of pages10
ISBN (Electronic)9781728148038
DOIs
StatePublished - Oct 2019
Externally publishedYes
Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
Duration: Oct 27 2019Nov 2 2019

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2019-October
ISSN (Print)1550-5499

Conference

Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period10/27/1911/2/19

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Deeppruner: Learning Efficient Stereo Matching via Differentiable Patchmatch'. Together they form a unique fingerprint.

Cite this