DeepBiomarker2: Prediction of Alcohol and Substance Use Disorder Risk in Post-Traumatic Stress Disorder Patients Using Electronic Medical Records and Multiple Social Determinants of Health

Oshin Miranda, Peihao Fan, Xiguang Qi, Haohan Wang, M. Daniel Brannock, Thomas R. Kosten, Neal David Ryan, Levent Kirisci, Lirong Wang

Research output: Contribution to journalArticlepeer-review

Abstract

Prediction of high-risk events amongst patients with mental disorders is critical for personalized interventions. We developed DeepBiomarker2 by leveraging deep learning and natural language processing to analyze lab tests, medication use, diagnosis, social determinants of health (SDoH) parameters, and psychotherapy for outcome prediction. To increase the model’s interpretability, we further refined our contribution analysis to identify key features by scaling with a factor from a reference feature. We applied DeepBiomarker2 to analyze the EMR data of 38,807 patients from the University of Pittsburgh Medical Center diagnosed with post-traumatic stress disorder (PTSD) to determine their risk of developing alcohol and substance use disorder (ASUD). DeepBiomarker2 predicted whether a PTSD patient would have a diagnosis of ASUD within the following 3 months with an average c-statistic (receiver operating characteristic AUC) of 0.93 and average F1 score, precision, and recall of 0.880, 0.895, and 0.866 in the test sets, respectively. Our study found that the medications clindamycin, enalapril, penicillin, valacyclovir, Xarelto/rivaroxaban, moxifloxacin, and atropine and the SDoH parameters access to psychotherapy, living in zip codes with a high normalized vegetative index, Gini index, and low-income segregation may have potential to reduce the risk of ASUDs in PTSD. In conclusion, the integration of SDoH information, coupled with the refined feature contribution analysis, empowers DeepBiomarker2 to accurately predict ASUD risk. Moreover, the model can further identify potential indicators of increased risk along with medications with beneficial effects.
Original languageEnglish (US)
Article number94
JournalJournal of Personalized Medicine
Volume14
Issue number1
DOIs
StatePublished - Jan 2024

Keywords

  • post-traumatic stress disorder
  • biomarker identification
  • deep learning
  • natural language processing
  • psychotherapy
  • social determinants of health
  • alcohol and substance use disorder
  • alcohol
  • and substance use disorder

ASJC Scopus subject areas

  • Medicine (miscellaneous)

Fingerprint

Dive into the research topics of 'DeepBiomarker2: Prediction of Alcohol and Substance Use Disorder Risk in Post-Traumatic Stress Disorder Patients Using Electronic Medical Records and Multiple Social Determinants of Health'. Together they form a unique fingerprint.

Cite this