Deep Rigid Instance Scene Flow

Wei Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, Raquel Urtasun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper we tackle the problem of scene flow estimation in the context of self-driving. We leverage deep learning techniques as well as strong priors as in our application domain the motion of the scene can be composed by the motion of the robot and the 3D motion of the actors in the scene. We formulate the problem as energy minimization in a deep structured model, which can be solved efficiently in the GPU by unrolling a Gaussian-Newton solver. Our experiments in the challenging KITTI scene flow dataset show that we outperform the state-of-the-art by a very large margin, while being 800 times faster.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages3609-3617
Number of pages9
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Externally publishedYes
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: Jun 16 2019Jun 20 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period6/16/196/20/19

Keywords

  • Low-level Vision
  • Motion and Tracking
  • Robotics + Driving

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Deep Rigid Instance Scene Flow'. Together they form a unique fingerprint.

Cite this