TY - GEN
T1 - Deep learning-based damage detection of miter gates using synthetic imagery from computer graphics
AU - Hoskere, Vedhus
AU - Narazaki, Yasutaka
AU - Spencer, Billie F.
AU - Smith, Matthew D.
N1 - Publisher Copyright:
© 2019 by DEStech Publications, Inc. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Structural inspections of large, difficult-to-access infrastructure like dams and bridges are often time-consuming, laborious and unsafe. In the United States, federal and state agencies responsible for managing such infrastructure assets are investigating the use of unmanned aerial vehicles (UAV) to allow for remote data acquisition. Processing the large amounts of data acquired by the UAV remains a challenging task. Over the past four years, researchers have been investigating deep learning methods for automated damage detection through image classification and more recently, the use of semantic segmentation where each pixel in the image is given a certain label. For such algorithms to work effectively, deep neural networks need to be trained on large datasets of labelled images. The generation of these labels for semantic segmentation is a very tedious process as it requires each pixel in the image to be labelled. This paper investigates the use of computer graphics to automatically generate synthetic imagery for the purposes of training deep learning algorithms for vision-based damage detection using semantic segmentation. The significant advantage of this is the automatic generation of precise semantic labels due to the implicit information in the developed graphics models. Parametric noise-based graphics texture models are created for defects such as cracks and corrosion and for other features such as vegetation growth, and dirt. The parameterization of the texture models allows for generation of a range of different surface conditions, thereby providing increased flexibility over data generation. To demonstrate the benefits of the proposed methodology for synthetic data generation a virtual environment of inland navigation infrastructure including miter gates and tainter gate dams is created. The developed texture models are applied to the virtual environment to produce a photo-realistic model. Synthetic image data is then rendered from the developed model and used to demonstrate the efficacy for training deep learning-based semantic segmentation algorithms for damage detection.
AB - Structural inspections of large, difficult-to-access infrastructure like dams and bridges are often time-consuming, laborious and unsafe. In the United States, federal and state agencies responsible for managing such infrastructure assets are investigating the use of unmanned aerial vehicles (UAV) to allow for remote data acquisition. Processing the large amounts of data acquired by the UAV remains a challenging task. Over the past four years, researchers have been investigating deep learning methods for automated damage detection through image classification and more recently, the use of semantic segmentation where each pixel in the image is given a certain label. For such algorithms to work effectively, deep neural networks need to be trained on large datasets of labelled images. The generation of these labels for semantic segmentation is a very tedious process as it requires each pixel in the image to be labelled. This paper investigates the use of computer graphics to automatically generate synthetic imagery for the purposes of training deep learning algorithms for vision-based damage detection using semantic segmentation. The significant advantage of this is the automatic generation of precise semantic labels due to the implicit information in the developed graphics models. Parametric noise-based graphics texture models are created for defects such as cracks and corrosion and for other features such as vegetation growth, and dirt. The parameterization of the texture models allows for generation of a range of different surface conditions, thereby providing increased flexibility over data generation. To demonstrate the benefits of the proposed methodology for synthetic data generation a virtual environment of inland navigation infrastructure including miter gates and tainter gate dams is created. The developed texture models are applied to the virtual environment to produce a photo-realistic model. Synthetic image data is then rendered from the developed model and used to demonstrate the efficacy for training deep learning-based semantic segmentation algorithms for damage detection.
UR - http://www.scopus.com/inward/record.url?scp=85074298013&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074298013&partnerID=8YFLogxK
U2 - 10.12783/shm2019/32463
DO - 10.12783/shm2019/32463
M3 - Conference contribution
AN - SCOPUS:85074298013
T3 - Structural Health Monitoring 2019: Enabling Intelligent Life-Cycle Health Management for Industry Internet of Things (IIOT) - Proceedings of the 12th International Workshop on Structural Health Monitoring
SP - 3073
EP - 3080
BT - Structural Health Monitoring 2019
A2 - Chang, Fu-Kuo
A2 - Guemes, Alfredo
A2 - Kopsaftopoulos, Fotis
PB - DEStech Publications Inc.
T2 - 12th International Workshop on Structural Health Monitoring: Enabling Intelligent Life-Cycle Health Management for Industry Internet of Things (IIOT), IWSHM 2019
Y2 - 10 September 2019 through 12 September 2019
ER -