Deep generative and discriminative domain adaptation

Han Zhao, Junjie Hu, Zhenyao Zhu, Adam Coates, Geoff Gordon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The ability to adapt to and learn from different domains and environments is crucial for agents to generalize. In this paper we propose a probabilistic framework for domain adaptation that blends both generative and discriminative modeling in a principled way. Under this framework, generative and discriminative models correspond to specific choices of the prior over parameters. By maximizing both the marginal and the conditional log-likelihoods, our models can use both labeled instances from the source domain as well as unlabeled instances from both source and target domains. We show that the popular reconstruction loss of autoencoder corresponds to an upper bound of the negative marginal log-likelihoods of unlabeled instances, and give a generalization bound that explicitly incorporates it into the analysis. We instantiate our framework using neural networks, and build a concrete model, DAuto.

Original languageEnglish (US)
Title of host publication18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019
PublisherInternational Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
Pages2315-2317
Number of pages3
ISBN (Electronic)9781510892002
StatePublished - 2019
Externally publishedYes
Event18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019 - Montreal, Canada
Duration: May 13 2019May 17 2019

Publication series

NameProceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
Volume4
ISSN (Print)1548-8403
ISSN (Electronic)1558-2914

Conference

Conference18th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2019
Country/TerritoryCanada
CityMontreal
Period5/13/195/17/19

Keywords

  • Adversarial machine learning
  • Deep learning
  • Discriminative models
  • Domain adaptation
  • Generative models

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Deep generative and discriminative domain adaptation'. Together they form a unique fingerprint.

Cite this