Deep Autotuner: A Pitch Correcting Network for Singing Performances

Sanna Wager, George Tzanetakis, Cheng I. Wang, Minje Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We introduce a data-driven approach to automatic pitch correction of solo singing performances. The proposed approach predicts note-wise pitch shifts from the relationship between the respective spectrograms of the singing and accompaniment. This approach differs from commercial systems, where vocal track notes are usually shifted to be centered around pitches in a user-defined score, or mapped to the closest pitch among the twelve equal-tempered scale degrees. The proposed system treats pitch as a continuous value rather than relying on a set of discretized notes found in musical scores, thus allowing for improvisation and harmonization in the singing performance. We train our neural network model using a dataset of 4,702 amateur karaoke performances selected for good intonation. Our model is trained on both incorrect intonation, for which it learns a correction, and intentional pitch variation, which it learns to preserve. The proposed deep neural network with gated recurrent units on top of convolutional layers shows promising performance on the real-world score-free singing pitch correction task - autotuning.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages246-250
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Externally publishedYes
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: May 4 2020May 8 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period5/4/205/8/20

Keywords

  • automatic pitch correction
  • autotuning
  • deep learning
  • music information retrieval
  • singing voice

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Deep Autotuner: A Pitch Correcting Network for Singing Performances'. Together they form a unique fingerprint.

Cite this