Decoupling behavior, perception, and control for autonomous learning of affordances

Tucker Hermans, James M. Rehg, Aaron F. Bobick

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A novel behavior representation is introduced that permits a robot to systematically explore the best methods by which to successfully execute an affordance-based behavior for a particular object. The approach decomposes affordance-based behaviors into three components. We first define controllers that specify how to achieve a desired change in object state through changes in the agent's state. For each controller we develop at least one behavior primitive that determines how the controller outputs translate to specific movements of the agent. Additionally we provide multiple perceptual proxies that define the representation of the object that is to be computed as input to the controller during execution. A variety of proxies may be selected for a given controller and a given proxy may provide input for more than one controller. When developing an appropriate affordance-based behavior strategy for a given object, the robot can systematically vary these elements as well as note the impact of additional task variables such as location in the workspace. We demonstrate the approach using a PR2 robot that explores different combinations of controller, behavior primitive, and proxy to perform a push or pull positioning behavior on a selection of household objects, learning which methods best work for each object.

Original languageEnglish (US)
Title of host publication2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Pages4989-4996
Number of pages8
DOIs
StatePublished - 2013
Externally publishedYes
Event2013 IEEE International Conference on Robotics and Automation, ICRA 2013 - Karlsruhe, Germany
Duration: May 6 2013May 10 2013

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Country/TerritoryGermany
CityKarlsruhe
Period5/6/135/10/13

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Decoupling behavior, perception, and control for autonomous learning of affordances'. Together they form a unique fingerprint.

Cite this