Decomposition analysis on soybean productivity increase under elevated CO2using 3-D canopy model reveals synergestic effects of CO2and light in photosynthesis

Qingfeng Song, Venkatraman Srinivasan, Steve P. Long, Xin Guang Zhu

Research output: Contribution to journalArticlepeer-review

Abstract

Background and Aims: Understanding how climate change influences crop productivity helps in identifying new options to increase crop productivity. Soybean is the most important dicotyledonous seed crop in terms of planting area. Although the impacts of elevated atmospheric [CO2] on soybean physiology, growth and biomass accumulation have been studied extensively, the contribution of different factors to changes in season-long whole crop photosynthetic CO2 uptake [gross primary productivity (GPP)] under elevated [CO2] have not been fully quantified. Methods: A 3-D canopy model combining canopy 3-D architecture, ray tracing and leaf photosynthesis was built to: (1) study the impacts of elevated [CO2] on soybean GPP across a whole growing season; (2) dissect the contribution of different factors to changes in GPP; and (3) determine the extent, if any, of synergism between [CO2] and light on changes in GPP. The model was parameterized from measurements of leaf physiology and canopy architectural parameters at the soybean Free Air CO2 Enrichment (SoyFACE) facility in Champaign, Illinois. Key Results: Using this model, we showed that both a CO2 fertilization effect and changes in canopy architecture contributed to the large increase in GPP while acclimation in photosynthetic physiological parameters to elevated [CO2] and altered leaf temperature played only a minor role in the changes in GPP. Furthermore, at early developmental stages, elevated [CO2] increased leaf area index which led to increased canopy light absorption and canopy photosynthesis. At later developmental stages, on days with high ambient light levels, the proportion of leaves in a canopy limited by Rubisco carboxylation increased from 12.2 % to 35.6 %, which led to a greater enhancement of elevated [CO2] to GPP. Conclusions: This study develops a new method to dissect the contribution of different factors to responses of crops under climate change. We showed that there is a synergestic effect of CO2 and light on crop growth under elevated CO2 conditions.

Original languageEnglish (US)
Pages (from-to)601-614
Number of pages14
JournalAnnals of botany
Volume126
Issue number4
DOIs
StatePublished - Sep 14 2020

Keywords

  • Canopy architecture
  • SoyFACE
  • atmospheric change
  • canopy absorbance
  • climate change
  • food security
  • growth
  • leaf area index
  • leaf temperature
  • light extinction coefficient
  • photosynthesis
  • soybean

ASJC Scopus subject areas

  • Plant Science

Fingerprint Dive into the research topics of 'Decomposition analysis on soybean productivity increase under elevated CO<sub>2</sub>using 3-D canopy model reveals synergestic effects of CO<sub>2</sub>and light in photosynthesis'. Together they form a unique fingerprint.

Cite this