TY - JOUR
T1 - Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context
AU - Jia, Jingru
AU - Yuan, Zehua
AU - Pan, Junhao
AU - McNamara, Paul E.
AU - Chen, Deming
N1 - Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.
PY - 2024
Y1 - 2024
N2 - When making decisions under uncertainty, individuals often deviate from rational behavior, which can be evaluated across three dimensions: risk preference, probability weighting, and loss aversion. Given the widespread use of large language models (LLMs) in supporting decision-making processes, it is crucial to assess whether their behavior aligns with human norms and ethical expectations or exhibits potential biases. Although several empirical studies have investigated the rationality and social behavior performance of LLMs, their internal decision-making tendencies and capabilities remain inadequately understood. This paper proposes a framework, grounded in behavioral economics theories, to evaluate the decision-making behaviors of LLMs. With a multiple-choice-list experiment, we initially estimate the degree of risk preference, probability weighting, and loss aversion in a context-free setting for three commercial LLMs: ChatGPT-4.0-Turbo, Claude-3-Opus, and Gemini-1.0-pro. Our results reveal that LLMs generally exhibit patterns similar to humans, such as risk aversion and loss aversion, with a tendency to overweight small probabilities, but there are significant variations in the degree to which these behaviors are expressed across different LLMs. Further, we explore their behavior when embedded with socio-demographic features of human beings, uncovering significant disparities across various demographic characteristics. For instance, when modeled with attributes of sexual minority groups or physical disabilities, Claude-3-Opus displays increased risk aversion, leading to more conservative choices. These findings underscore the need for careful consideration of the ethical implications and potential biases in deploying LLMs in decision-making scenarios. Therefore, this study advocates for the development of standards and guidelines to ensure that LLMs operate within ethical boundaries while enhancing their utility in complex decision-making environments.
AB - When making decisions under uncertainty, individuals often deviate from rational behavior, which can be evaluated across three dimensions: risk preference, probability weighting, and loss aversion. Given the widespread use of large language models (LLMs) in supporting decision-making processes, it is crucial to assess whether their behavior aligns with human norms and ethical expectations or exhibits potential biases. Although several empirical studies have investigated the rationality and social behavior performance of LLMs, their internal decision-making tendencies and capabilities remain inadequately understood. This paper proposes a framework, grounded in behavioral economics theories, to evaluate the decision-making behaviors of LLMs. With a multiple-choice-list experiment, we initially estimate the degree of risk preference, probability weighting, and loss aversion in a context-free setting for three commercial LLMs: ChatGPT-4.0-Turbo, Claude-3-Opus, and Gemini-1.0-pro. Our results reveal that LLMs generally exhibit patterns similar to humans, such as risk aversion and loss aversion, with a tendency to overweight small probabilities, but there are significant variations in the degree to which these behaviors are expressed across different LLMs. Further, we explore their behavior when embedded with socio-demographic features of human beings, uncovering significant disparities across various demographic characteristics. For instance, when modeled with attributes of sexual minority groups or physical disabilities, Claude-3-Opus displays increased risk aversion, leading to more conservative choices. These findings underscore the need for careful consideration of the ethical implications and potential biases in deploying LLMs in decision-making scenarios. Therefore, this study advocates for the development of standards and guidelines to ensure that LLMs operate within ethical boundaries while enhancing their utility in complex decision-making environments.
UR - http://www.scopus.com/inward/record.url?scp=105000506012&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105000506012&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:105000506012
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
Y2 - 9 December 2024 through 15 December 2024
ER -