TY - GEN
T1 - Decentralized sequential change detection with ordered CUSUMs
AU - Banerjee, Sourabh
AU - Fellouris, Georgios
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/8/10
Y1 - 2016/8/10
N2 - We consider the problem of decentralized sequential change detection, in which K sensors monitor a system in real time, and at some unknown time there is an anomaly in the environment that changes the distribution of the observations in all sensors. The sensors communicate with a fusion center that is responsible for quickly detecting the change, while controlling the false alarm rate. We focus on two families of decentralized detection rules with minimal communication requirements. First, we assume that each sensor runs a local CUSUM algorithm and communicates with the fusion center only once, when it detects the change. The fusion center then declares that a change has occurred when m of the K sensors have raised an alarm. Assuming that all sensors have the same signal strength, we show that the asymptotic performance of these one-shot schemes is free of m to a first order, but decreases with m to a second-order, suggesting that the best strategy for the fusion center is to detect the change with the first alarm. Second, we consider schemes that detect the change when m of the K sensors agree simultaneously that the change has occurred. While a first-order asymptotic analysis suggests that it is optimal for the fusion center to wait for all sensors to agree simultaneously, a second-order analysis reveals that it can be better to wait fewer (but more than half) of the sensors to agree. The insights from these asymptotic results are supported by a simulation study.
AB - We consider the problem of decentralized sequential change detection, in which K sensors monitor a system in real time, and at some unknown time there is an anomaly in the environment that changes the distribution of the observations in all sensors. The sensors communicate with a fusion center that is responsible for quickly detecting the change, while controlling the false alarm rate. We focus on two families of decentralized detection rules with minimal communication requirements. First, we assume that each sensor runs a local CUSUM algorithm and communicates with the fusion center only once, when it detects the change. The fusion center then declares that a change has occurred when m of the K sensors have raised an alarm. Assuming that all sensors have the same signal strength, we show that the asymptotic performance of these one-shot schemes is free of m to a first order, but decreases with m to a second-order, suggesting that the best strategy for the fusion center is to detect the change with the first alarm. Second, we consider schemes that detect the change when m of the K sensors agree simultaneously that the change has occurred. While a first-order asymptotic analysis suggests that it is optimal for the fusion center to wait for all sensors to agree simultaneously, a second-order analysis reveals that it can be better to wait fewer (but more than half) of the sensors to agree. The insights from these asymptotic results are supported by a simulation study.
UR - http://www.scopus.com/inward/record.url?scp=84985993176&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84985993176&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2016.7541256
DO - 10.1109/ISIT.2016.7541256
M3 - Conference contribution
AN - SCOPUS:84985993176
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 36
EP - 40
BT - Proceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 IEEE International Symposium on Information Theory, ISIT 2016
Y2 - 10 July 2016 through 15 July 2016
ER -