TY - GEN
T1 - Decentralized Q-Learning in Zero-sum Markov Games
AU - Sayin, Muhammed O.
AU - Zhang, Kaiqing
AU - Leslie, David S.
AU - Başar, Tamer
AU - Ozdaglar, Asuman
N1 - Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - We study multi-agent reinforcement learning (MARL) in infinite-horizon discounted zero-sum Markov games. We focus on the practical but challenging setting of decentralized MARL, where agents make decisions without coordination by a centralized controller, but only based on their own payoffs and local actions executed. The agents need not observe the opponent's actions or payoffs, possibly being even oblivious to the presence of the opponent, nor be aware of the zero-sum structure of the underlying game, a setting also referred to as radically uncoupled in the literature of learning in games. In this paper, we develop a radically uncoupled Q-learning dynamics that is both rational and convergent: the learning dynamics converges to the best response to the opponent's strategy when the opponent follows an asymptotically stationary strategy; when both agents adopt the learning dynamics, they converge to the Nash equilibrium of the game. The key challenge in this decentralized setting is the non-stationarity of the environment from an agent's perspective, since both her own payoffs and the system evolution depend on the actions of other agents, and each agent adapts her policies simultaneously and independently. To address this issue, we develop a two-timescale learning dynamics where each agent updates her local Q-function and value function estimates concurrently, with the latter happening at a slower timescale.
AB - We study multi-agent reinforcement learning (MARL) in infinite-horizon discounted zero-sum Markov games. We focus on the practical but challenging setting of decentralized MARL, where agents make decisions without coordination by a centralized controller, but only based on their own payoffs and local actions executed. The agents need not observe the opponent's actions or payoffs, possibly being even oblivious to the presence of the opponent, nor be aware of the zero-sum structure of the underlying game, a setting also referred to as radically uncoupled in the literature of learning in games. In this paper, we develop a radically uncoupled Q-learning dynamics that is both rational and convergent: the learning dynamics converges to the best response to the opponent's strategy when the opponent follows an asymptotically stationary strategy; when both agents adopt the learning dynamics, they converge to the Nash equilibrium of the game. The key challenge in this decentralized setting is the non-stationarity of the environment from an agent's perspective, since both her own payoffs and the system evolution depend on the actions of other agents, and each agent adapts her policies simultaneously and independently. To address this issue, we develop a two-timescale learning dynamics where each agent updates her local Q-function and value function estimates concurrently, with the latter happening at a slower timescale.
UR - http://www.scopus.com/inward/record.url?scp=85131635937&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131635937&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85131635937
T3 - Advances in Neural Information Processing Systems
SP - 18320
EP - 18334
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -