TY - GEN
T1 - Data-driven rank breaking for efficient rank aggregation
AU - Khetan, Ashish
AU - Oh, Sewoong
PY - 2016
Y1 - 2016
N2 - Rank aggregation systems collect ordinal preferences from individuals to produce a global ranking that represents the social preference. To reduce the computational complexity of learning the global ranking, a common practice is to use rank-breaking. Individuals' preferences are broken into pairwise comparisons and then applied to efficient algorithms tailored for independent pairwise comparisons. However, due to the ignored dependencies, naive rank-breaking approaches can result in inconsistent estimates. The key idea to produce unbiased and accurate estimates is to treat the paired comparisons outcomes unequally, depending on the topology of the collected data. In this paper, we provide the optimal rank-breaking estimator, which not only achieves consistency but also achieves the best error bound. This allows us to characterize the fundamental tradeoff between accuracy and complexity in some canonical scenarios. Further, we identify how the accuracy depends on the spectral gap of a corresponding comparison graph.
AB - Rank aggregation systems collect ordinal preferences from individuals to produce a global ranking that represents the social preference. To reduce the computational complexity of learning the global ranking, a common practice is to use rank-breaking. Individuals' preferences are broken into pairwise comparisons and then applied to efficient algorithms tailored for independent pairwise comparisons. However, due to the ignored dependencies, naive rank-breaking approaches can result in inconsistent estimates. The key idea to produce unbiased and accurate estimates is to treat the paired comparisons outcomes unequally, depending on the topology of the collected data. In this paper, we provide the optimal rank-breaking estimator, which not only achieves consistency but also achieves the best error bound. This allows us to characterize the fundamental tradeoff between accuracy and complexity in some canonical scenarios. Further, we identify how the accuracy depends on the spectral gap of a corresponding comparison graph.
UR - http://www.scopus.com/inward/record.url?scp=84997701925&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84997701925&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84997701925
T3 - 33rd International Conference on Machine Learning, ICML 2016
SP - 146
EP - 155
BT - 33rd International Conference on Machine Learning, ICML 2016
A2 - Balcan, Maria Florina
A2 - Weinberger, Kilian Q.
PB - International Machine Learning Society (IMLS)
T2 - 33rd International Conference on Machine Learning, ICML 2016
Y2 - 19 June 2016 through 24 June 2016
ER -