Data-driven combustion kinetic modeling concept of alternative alcohol-to-jet (Atj) fuel

Keunsoo Kim, Je Ir Ryu, Brendan McGann, Kyungwook Min, Jacob Temme, Chol Bum M. Kweon, Tonghun Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The autoignition characteristics of an alternative alcohol to jet (ATJ) fuel are examined by analyzing chemical ignition delay using a rapid compression machine (RCM) and shock tube. Additionally, a data-driven chemical kinetic mechanism based on the HyChem approach of ATJ is proposed for modeling the ignition process. Ignition delay times of ATJ are measured at a compressed pressure of PC = 2 MPa and at stoichiometric condition (ϕ=1) in synthetic dry air, between 667 K and 1250 K. The unique chemical structures of isoalkanes result in relatively low chemical reactivity under intermediate and low temperatures. Based on empirical results for ignition delay curves, a new lumped mechanism is optimized using a genetic algorithm. The newly introduced data-driven mechanism shows good performance not only for the high temperature regions as expected for HyChem, but over the entire negative temperature coefficient (NTC) and low temperature regimes. The experimental data and the kinetic model developed for ATJ in this study can offer understanding of the oxidation of extreme fuels in practical combustion systems which operate in NTC or low temperature conditions.

Original languageEnglish (US)
Title of host publicationAIAA Scitech 2021 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
Pages1-11
Number of pages11
ISBN (Print)9781624106095
StatePublished - 2021
EventAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021 - Virtual, Online
Duration: Jan 11 2021Jan 15 2021

Publication series

NameAIAA Scitech 2021 Forum
Volume1 PartF

Conference

ConferenceAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
CityVirtual, Online
Period1/11/211/15/21

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Data-driven combustion kinetic modeling concept of alternative alcohol-to-jet (Atj) fuel'. Together they form a unique fingerprint.

Cite this