TY - GEN
T1 - Data-driven combustion kinetic modeling concept of alternative alcohol-to-jet (Atj) fuel
AU - Kim, Keunsoo
AU - Ryu, Je Ir
AU - McGann, Brendan
AU - Min, Kyungwook
AU - Temme, Jacob
AU - Kweon, Chol Bum M.
AU - Lee, Tonghun
N1 - Publisher Copyright:
© 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2021
Y1 - 2021
N2 - The autoignition characteristics of an alternative alcohol to jet (ATJ) fuel are examined by analyzing chemical ignition delay using a rapid compression machine (RCM) and shock tube. Additionally, a data-driven chemical kinetic mechanism based on the HyChem approach of ATJ is proposed for modeling the ignition process. Ignition delay times of ATJ are measured at a compressed pressure of PC = 2 MPa and at stoichiometric condition (ϕ=1) in synthetic dry air, between 667 K and 1250 K. The unique chemical structures of isoalkanes result in relatively low chemical reactivity under intermediate and low temperatures. Based on empirical results for ignition delay curves, a new lumped mechanism is optimized using a genetic algorithm. The newly introduced data-driven mechanism shows good performance not only for the high temperature regions as expected for HyChem, but over the entire negative temperature coefficient (NTC) and low temperature regimes. The experimental data and the kinetic model developed for ATJ in this study can offer understanding of the oxidation of extreme fuels in practical combustion systems which operate in NTC or low temperature conditions.
AB - The autoignition characteristics of an alternative alcohol to jet (ATJ) fuel are examined by analyzing chemical ignition delay using a rapid compression machine (RCM) and shock tube. Additionally, a data-driven chemical kinetic mechanism based on the HyChem approach of ATJ is proposed for modeling the ignition process. Ignition delay times of ATJ are measured at a compressed pressure of PC = 2 MPa and at stoichiometric condition (ϕ=1) in synthetic dry air, between 667 K and 1250 K. The unique chemical structures of isoalkanes result in relatively low chemical reactivity under intermediate and low temperatures. Based on empirical results for ignition delay curves, a new lumped mechanism is optimized using a genetic algorithm. The newly introduced data-driven mechanism shows good performance not only for the high temperature regions as expected for HyChem, but over the entire negative temperature coefficient (NTC) and low temperature regimes. The experimental data and the kinetic model developed for ATJ in this study can offer understanding of the oxidation of extreme fuels in practical combustion systems which operate in NTC or low temperature conditions.
UR - http://www.scopus.com/inward/record.url?scp=85100320577&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100320577&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85100320577
SN - 9781624106095
T3 - AIAA Scitech 2021 Forum
SP - 1
EP - 11
BT - AIAA Scitech 2021 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
Y2 - 11 January 2021 through 15 January 2021
ER -