Abstract
Molecular phylogenetic analysis was conducted using conserved cytoplasmic actin and diversified cytochrome P450 (P450) sequences isolated from Helicoverpa zea and Helicoverpa armigera, two species thought to be closely related based on allozyme analyses. These sequences were compared in turn with published sequences from other insects to gain insight into how different gene families evolve. In Bombyx mori and these Helicoverpa species, cytoplasmic actin genes are present as a pair of tandemly duplicated paralogs with coding sequence identities as high as 95.5% (B. mori), 98.9% (H. zea) and 98.5% (H. armigera) due to recent 5′-polar gene conversions. Phylogeny and interspecies comparisons assign the six actin genes into two orthologous groups: HaA3a/HzA3a/BmA3 and HaA3b/HzA3b/BmA4, which exhibit more similarities between H. zea and H. armigera than between Helicoverpa species and B. mori. Like the actin genes in H. zea, four CYP6B genes exist as two pairs of duplicated paralogs with recent 5′-polar gene conversions. Interspecific comparisons and phylogeny analysis identified three groups of orthologous CYP6B genes: H. zea CYP6B8 or CYP6B28/H. armigera CYP6B7, H. zea CYP6B27/H. armigera CYP6B6, and H. zea CYP6B9/H. armigera CYP6B2/Heliothis virescens CYP6B10. The low degree of divergence in the first two of these groups is comparable to allelic variation within a single species. These orthologous relationships and the high degrees of similarity in both actin and P450 genes strongly indicate that these Helicoverpa species are extremely closely related.
Original language | English (US) |
---|---|
Pages (from-to) | 311-320 |
Number of pages | 10 |
Journal | Insect Biochemistry and Molecular Biology |
Volume | 32 |
Issue number | 3 |
DOIs | |
State | Published - Mar 1 2002 |
Keywords
- Actin
- Cytochrome P450
- Evolution
- Gene conversion
- Heliothinae
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Insect Science