Cytochrome P450: An Investigation of the Mössbauer Spectra of a Reaction Intermediate and an Fe(IV)=O Model System

Yong Zhang, Eric Oldfield

Research output: Contribution to journalArticlepeer-review

Abstract

We have carried out a series of density functional theory (DFT) calculations to predict the 57Fe Mössbauer quadrupole splittings (ΔEQ) and isomer shifts (δFe) for an Fe(IV)=O model compound ([Fe(O)(TMC)(NCCH3)](OTf)2, TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, OTf = CF3SO3-) as well as a cytochrome P450 reaction intermediate (P450-RI). The DFT predictions on the model compound are in almost exact agreement with experiment. The same DFT methods did not enable the prediction of the experimental ΔEQ results for P450-RI when using the experimental protein crystal structure and seven different spin/charge/protonation state combinations, but did permit good predictions of both ΔEQ and δFe when using a geometry optimized structure having a porphyrin dianion, a protonated cysteine, and S = 1 (the same as that found from previous ESR studies).

Original languageEnglish (US)
Pages (from-to)4470-4471
Number of pages2
JournalJournal of the American Chemical Society
Volume126
Issue number14
DOIs
StatePublished - Apr 14 2004

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Cytochrome P450: An Investigation of the Mössbauer Spectra of a Reaction Intermediate and an Fe(IV)=O Model System'. Together they form a unique fingerprint.

Cite this