Curvature regularization to prevent distortion in graph embedding

Hongbin Pei, Bingzhe Wei, Kevin Chen Chuan Chang, Chunxu Zhang, Bo Yang

Research output: Contribution to journalConference articlepeer-review

Abstract

Recent research on graph embedding has achieved success in various applications. Most graph embedding methods preserve the proximity in a graph into a manifold in an embedding space. We argue an important but neglected problem about this proximity-preserving strategy: Graph topology patterns, while preserved well into an embedding manifold by preserving proximity, may distort in the ambient embedding Euclidean space, and hence to detect them becomes difficult for machine learning models. To address the problem, we propose curvature regularization, to enforce flatness for embedding manifolds, thereby preventing the distortion. We present a novel angle-based sectional curvature, termed ABS curvature, and accordingly three kinds of curvature regularization to induce flat embedding manifolds during graph embedding. We integrate curvature regularization into five popular proximity-preserving embedding methods, and empirical results in two applications show significant improvements on a wide range of open graph datasets.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Curvature regularization to prevent distortion in graph embedding'. Together they form a unique fingerprint.

Cite this