TY - JOUR
T1 -
CuInSe
2
for photovoltaic applications
AU - Rockett, Angus
AU - Birkmire, R. W.
PY - 1991
Y1 - 1991
N2 - The properties and most successful methods for producing CuInSe2 films for solar-cell applications are reviewed and the production, analysis, and performance of photovoltaic devices based on CuInSe2 are discussed. The most successful methods for depositing thin CuInSe2 films for high-efficiency solar cells are three-source elemental evaporation and selenization of Cu/In layers in H2Se atmospheres. Devices based on CuInSe2 have achieved the highest conversion efficiencies for any nonepitaxial thin-film solar cell, 14.1% for a small cell and 10.4% (aperture efficiency) for a 3916-cm2 (4 sq. ft) device. Furthermore, high-efficiency devices have been produced by several groups and have shown no evidence of degradation of performance with time. The internal quantum efficiency is remarkably close to 100%, although various losses prevent making use of all of the generated carriers. The high performance results, in part, from the very-high-absorption coefficient of CuInSe2, which is of the order of 105 cm-1 for photons with energies slightly above 1 eV. Models of the operation of CuInSe2/CdS heterojunctions have begun to explain the processes limiting the device performance. The success of the models is based, in part, on the large amount of data which has accumulated on CuInSe2 in spite of the relatively short time it has been extensively studied.
AB - The properties and most successful methods for producing CuInSe2 films for solar-cell applications are reviewed and the production, analysis, and performance of photovoltaic devices based on CuInSe2 are discussed. The most successful methods for depositing thin CuInSe2 films for high-efficiency solar cells are three-source elemental evaporation and selenization of Cu/In layers in H2Se atmospheres. Devices based on CuInSe2 have achieved the highest conversion efficiencies for any nonepitaxial thin-film solar cell, 14.1% for a small cell and 10.4% (aperture efficiency) for a 3916-cm2 (4 sq. ft) device. Furthermore, high-efficiency devices have been produced by several groups and have shown no evidence of degradation of performance with time. The internal quantum efficiency is remarkably close to 100%, although various losses prevent making use of all of the generated carriers. The high performance results, in part, from the very-high-absorption coefficient of CuInSe2, which is of the order of 105 cm-1 for photons with energies slightly above 1 eV. Models of the operation of CuInSe2/CdS heterojunctions have begun to explain the processes limiting the device performance. The success of the models is based, in part, on the large amount of data which has accumulated on CuInSe2 in spite of the relatively short time it has been extensively studied.
UR - http://www.scopus.com/inward/record.url?scp=0001116348&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001116348&partnerID=8YFLogxK
U2 - 10.1063/1.349175
DO - 10.1063/1.349175
M3 - Article
AN - SCOPUS:0001116348
SN - 0021-8979
VL - 70
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 7
ER -