TY - JOUR
T1 - Crowdsourced mapping of unexplored target space of kinase inhibitors
AU - Team KinaseHunter
AU - Team AmsterdamUMC-KU-team
AU - Team DruginaseLearning
AU - Team KERMIT-LAB - Ghent University
AU - Team QED
AU - Team METU_EMBLEBI_CROssBAR
AU - Team DMIS_DK
AU - Team AI Winter is Coming
AU - Team hulab
AU - Team ML-Med
AU - Team Prospectors
AU - Challenge organizers
AU - The IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium
AU - User oselot
AU - Team N121
AU - Team Let_Data_Talk
AU - User thinng
AU - Team KKT
AU - Team Boun
AU - Cichońska, Anna
AU - Ravikumar, Balaguru
AU - Allaway, Robert J.
AU - Wan, Fangping
AU - Park, Sungjoon
AU - Isayev, Olexandr
AU - Li, Shuya
AU - Mason, Michael
AU - Lamb, Andrew
AU - Tanoli, Ziaurrehman
AU - Jeon, Minji
AU - Kim, Sunkyu
AU - Popova, Mariya
AU - Capuzzi, Stephen
AU - Zeng, Jianyang
AU - Dang, Kristen
AU - Koytiger, Gregory
AU - Kang, Jaewoo
AU - Wells, Carrow I.
AU - Willson, Timothy M.
AU - Tan, Mehmet
AU - Huang, Chih Han
AU - Shih, Edward S.C.
AU - Chen, Tsai Min
AU - Wu, Chih Hsun
AU - Fang, Wei Quan
AU - Chen, Jhih Yu
AU - Hwang, Ming Jing
AU - Wang, Xiaokang
AU - Ben Guebila, Marouen
AU - Shamsaei, Behrouz
AU - Singh, Sourav
AU - Nguyen, Thin
AU - Karimi, Mostafa
AU - Wu, Di
AU - Wang, Zhangyang
AU - Shen, Yang
AU - Öztürk, Hakime
AU - Ozkirimli, Elif
AU - Özgür, Arzucan
AU - Lim, Hansaim
AU - Xie, Lei
AU - Kanev, Georgi K.
AU - Kooistra, Albert J.
AU - Westerman, Bart A.
AU - Terzopoulos, Panagiotis
AU - Ntagiantas, Konstantinos
AU - Fotis, Christos
AU - Alexopoulos, Leonidas
AU - Peng, Jian
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound–kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome.
AB - Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound–kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome.
UR - http://www.scopus.com/inward/record.url?scp=85107545818&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107545818&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-23165-1
DO - 10.1038/s41467-021-23165-1
M3 - Article
C2 - 34083538
AN - SCOPUS:85107545818
SN - 2041-1723
VL - 12
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 3307
ER -