Crowd, Expert & AI: A Human-AI Interactive Approach Towards Natural Language Explanation Based COVID-19 Misinformation Detection

Ziyi Kou, Lanyu Shang, Yang Zhang, Zhenrui Yue, Huimin Zeng, Dong Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution


In this paper, we study an explainable COVID-19 misinformation detection problem where the goal is to accurately identify COVID-19 misleading posts on social media and explain the posts with natural language explanations (NLEs). Our problem is motivated by the limitations of current explainable misinformation detection approaches that cannot provide NLEs for COVID-19 posts due to the lack of sufficient professional COVID-19 knowledge for supervision. To address such a limitation, we develop CEA-COVID, a crowd-expert-AI framework that jointly exploits the common logical reasoning ability of online crowd workers and the professional knowledge of COVID-19 experts to effectively generate NLEs for detecting and explaining COVID-19 misinformation. We evaluate CEA-COVID using two public COVID-19 misinformation datasets on social media. Results demonstrate that CEA-COVID outperforms existing explainable misinformation detection models in terms of both explainability and detection accuracy.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
EditorsLuc De Raedt, Luc De Raedt
PublisherInternational Joint Conferences on Artificial Intelligence
Number of pages7
ISBN (Electronic)9781956792003
StatePublished - 2022
Event31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, Austria
Duration: Jul 23 2022Jul 29 2022

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823


Conference31st International Joint Conference on Artificial Intelligence, IJCAI 2022

ASJC Scopus subject areas

  • Artificial Intelligence

Cite this