TY - GEN
T1 - Crowd-assisted disaster scene assessment with human-AI interactive attention
AU - Zhang, Daniel
AU - Huang, Yifeng
AU - Zhang, Yang
AU - Wang, Dong
N1 - Funding Information:
This research is supported in part by the National Science Foundation under Grant No. CNS-1845639, CNS-1831669, Army Research Office under Grant W911NF-17-1-0409. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.
Publisher Copyright:
Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - The recent advances of mobile sensing and artificial intelligence (AI) have brought new revolutions in disaster response applications. One example is disaster scene assessment (DSA) which leverages computer vision techniques to assess the level of damage severity of the disaster events from images provided by eyewitnesses on social media. The assessment results are critical in prioritizing the rescue operations of the response teams. While AI algorithms can significantly reduce the detection time and manual labeling cost in such applications, their performance often falls short of the desired accuracy. Our work is motivated by the emergence of crowdsourcing platforms (e.g., Amazon Mechanic Turk, Waze) that provide unprecedented opportunities for acquiring human intelligence for AI applications. In this paper, we develop an interactive Disaster Scene Assessment (iDSA) scheme that allows AI algorithms to directly interact with humans to identify the salient regions of the disaster images in DSA applications. We also develop new incentive designs and active learning techniques to ensure reliable, timely, and cost-efficient responses from the crowdsourcing platforms. Our evaluation results on real-world case studies during Nepal and Ecuador earthquake events demonstrate that iDSA can significantly outperform state-of-the-art baselines in accurately assessing the damage of disaster scenes.
AB - The recent advances of mobile sensing and artificial intelligence (AI) have brought new revolutions in disaster response applications. One example is disaster scene assessment (DSA) which leverages computer vision techniques to assess the level of damage severity of the disaster events from images provided by eyewitnesses on social media. The assessment results are critical in prioritizing the rescue operations of the response teams. While AI algorithms can significantly reduce the detection time and manual labeling cost in such applications, their performance often falls short of the desired accuracy. Our work is motivated by the emergence of crowdsourcing platforms (e.g., Amazon Mechanic Turk, Waze) that provide unprecedented opportunities for acquiring human intelligence for AI applications. In this paper, we develop an interactive Disaster Scene Assessment (iDSA) scheme that allows AI algorithms to directly interact with humans to identify the salient regions of the disaster images in DSA applications. We also develop new incentive designs and active learning techniques to ensure reliable, timely, and cost-efficient responses from the crowdsourcing platforms. Our evaluation results on real-world case studies during Nepal and Ecuador earthquake events demonstrate that iDSA can significantly outperform state-of-the-art baselines in accurately assessing the damage of disaster scenes.
UR - http://www.scopus.com/inward/record.url?scp=85092725097&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092725097&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85092725097
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 2717
EP - 2724
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - American Association for Artificial Intelligence (AAAI) Press
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
Y2 - 7 February 2020 through 12 February 2020
ER -