TY - GEN
T1 - Cross-domain collaboration recommendation
AU - Tang, Jie
AU - Wu, Sen
AU - Sun, Jimeng
AU - Su, Hang
PY - 2012
Y1 - 2012
N2 - Interdisciplinary collaborations have generated huge impact to society. However, it is often hard for researchers to establish such cross-domain collaborations. What are the patterns of cross-domain collaborations? How do those collaborations form? Can we predict this type of collaborations? Cross-domain collaborations exhibit very different patterns compared to traditional collaborations in the same domain: 1) sparse connection: cross-domain collaborations are rare; 2) complementary expertise: cross-domain collaborators often have different expertise and interest; 3) topic skewness: cross-domain collaboration topics are focused on a subset of topics. All these patterns violate fundamental assumptions of traditional recommendation systems. In this paper, we analyze the cross-domain collaboration data from research publications and confirm the above patterns. We propose the Cross-domain Topic Learning (CTL) model to address these challenges. For handling sparse connections, CTL consolidates the existing cross-domain collaborations through topic layers instead of at author layers, which alleviates the sparseness issue. For handling complementary expertise, CTL models topic distributions from source and target domains separately, as well as the correlation across domains. For handling topic skewness, CTL only models relevant topics to the cross-domain collaboration. We compare CTL with several baseline approaches on large publication datasets from different domains. CTL outperforms baselines significantly on multiple recommendation metrics. Beyond accurate recommendation performance, CTL is also insensitive to parameter tuning as confirmed in the sensitivity analysis.
AB - Interdisciplinary collaborations have generated huge impact to society. However, it is often hard for researchers to establish such cross-domain collaborations. What are the patterns of cross-domain collaborations? How do those collaborations form? Can we predict this type of collaborations? Cross-domain collaborations exhibit very different patterns compared to traditional collaborations in the same domain: 1) sparse connection: cross-domain collaborations are rare; 2) complementary expertise: cross-domain collaborators often have different expertise and interest; 3) topic skewness: cross-domain collaboration topics are focused on a subset of topics. All these patterns violate fundamental assumptions of traditional recommendation systems. In this paper, we analyze the cross-domain collaboration data from research publications and confirm the above patterns. We propose the Cross-domain Topic Learning (CTL) model to address these challenges. For handling sparse connections, CTL consolidates the existing cross-domain collaborations through topic layers instead of at author layers, which alleviates the sparseness issue. For handling complementary expertise, CTL models topic distributions from source and target domains separately, as well as the correlation across domains. For handling topic skewness, CTL only models relevant topics to the cross-domain collaboration. We compare CTL with several baseline approaches on large publication datasets from different domains. CTL outperforms baselines significantly on multiple recommendation metrics. Beyond accurate recommendation performance, CTL is also insensitive to parameter tuning as confirmed in the sensitivity analysis.
KW - collaboration recommendation
KW - social influence
KW - social network
UR - http://www.scopus.com/inward/record.url?scp=84866020834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866020834&partnerID=8YFLogxK
U2 - 10.1145/2339530.2339730
DO - 10.1145/2339530.2339730
M3 - Conference contribution
AN - SCOPUS:84866020834
SN - 9781450314626
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 1285
EP - 1293
BT - KDD'12 - 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
T2 - 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012
Y2 - 12 August 2012 through 16 August 2012
ER -