Creating porcine biomedical models through recombineering

Margarita M. Rogatcheva, Laurie A. Rund, Kelly S. Swanson, Brandy M. Marron, Jonathan E. Beever, Christopher M. Counter, Lawrence B. Schook

Research output: Contribution to journalReview articlepeer-review


Recent advances in genomics provide genetic information from humans and other mammals (mouse, rat, dog and primates) traditionally used as models as well as new candidates (pigs and cattle). In addition, linked enabling technologies, such as transgenesis and animal cloning, provide innovative ways to design and perform experiments to dissect complex biological systems. Exploitation of genomic information overcomes the traditional need to choose naturally occurring models. Thus, investigators can utilize emerging genomic knowledge and tools to create relevant animal models. This approach is referred to as reverse genetics. In contrast to 'forward genetics', in which gene(s) responsible for a particular phenotype are identified by positional cloning (phenotype to genotype), the 'reverse genetics' approach determines the function of a gene and predicts the phenotype of a cell, tissue, or organism (genotype to phenotype). The convergence of classical and reverse, genetics, along with genomics, provides a working definition of a 'genetic model' organism (3). The recent construction of phenotypic maps defining quantitative trait loci (QTL) in various domesticated species provides insights into how allelic variations contribute to phenotypic diversity. Targeted chromosomal regions are characterized by the construction of bacterial artificial chromosome (BAC) contigs to isolate and characterize genes contributing towards phenotypic variation. Recombineering provides a powerful methodology to harvest genetic information responsible for phenotype. Linking recombineering with gene-targeted homologous recombination, coupled with nuclear transfer (NT) technology can provide 'clones' of genetically modified animals.

Original languageEnglish (US)
Pages (from-to)262-267
Number of pages6
JournalComparative and Functional Genomics
Issue number3
StatePublished - Apr 2004


  • Animal models
  • BAC
  • Genomics
  • Porcine
  • Recombineering

ASJC Scopus subject areas

  • Applied Microbiology and Biotechnology
  • Biotechnology
  • Genetics(clinical)


Dive into the research topics of 'Creating porcine biomedical models through recombineering'. Together they form a unique fingerprint.

Cite this