Abstract
We address the problem of computing fundamental performance bounds for estimation of object boundaries from noisy measurements in inverse problems, when the boundaries are parameterized by a finite number of unknown variables. Our model applies to multiple unknown objects, each with its own unknown gray level, or color, and boundary parameterization, on an arbitrary known background. While such fundamental bounds on the performance of shape estimation algorithms can in principle be derived from the Cramér-Rao lower bounds, very few results have been reported due to the difficulty of computing the derivatives of a functional with respect to shape deformation. In this paper, we provide a general formula for computing Cramér-Rao lower bounds in inverse problems where the observations are related to the object by a general linear transform, followed by a possibly nonlinear and noisy measurement system.
Original language | English (US) |
---|---|
Title of host publication | IEEE International Conference on Image Processing |
Volume | 2 |
State | Published - 2002 |
Event | International Conference on Image Processing (ICIP'02) - Rochester, NY, United States Duration: Sep 22 2002 → Sep 25 2002 |
Other
Other | International Conference on Image Processing (ICIP'02) |
---|---|
Country/Territory | United States |
City | Rochester, NY |
Period | 9/22/02 → 9/25/02 |
ASJC Scopus subject areas
- Hardware and Architecture
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering