Abstract

The choice of echo time (TE) is a complicated and controversial issue in proton MR spectroscopy, and represents a balancing act between signal-to-noise ratio and signal complexity. The TE values used in previous literature were selected either heuristically or based on limited empirical studies. In this work, we reconsider this problem from an estimation theoretic perspective. Specifically, we analyze the Cramér-Rao lower bound on estimated spectral parameters as a function of TE, which serves as a metric to quantify the reliability of the estimation procedure. This analysis reveals that a good choice of TE often depends on the particular metabolite of interest, and is a function of both the coupling properties of the metabolites and the general complexity of the spectrum.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages2692-2695
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'Cramér-Rao Bound analysis of echo time selection for1H-MR spectroscopy'. Together they form a unique fingerprint.

Cite this