@inproceedings{50f56169f0bc45c1b4dd7a2e4e9ef057,
title = "Covariance based outlier detection with feature selection",
abstract = "The present covariance based outlier detection algorithm selects from a candidate set of feature vectors that are best at identifying outliers. Features extracted from biomedical and health informatics data can be more informative in disease assessment and there are no restrictions on the nature and number of features that can be tested. But an important challenge for an algorithm operating on a set of features is for it to winnow the effective features from the ineffective ones. The powerful algorithm described in this paper leverages covariance information from the time series data to identify features with the highest sensitivity for outlier identification. Empirical results demonstrate the efficacy of the method.",
author = "Zwilling, {Chris E.} and Wang, {Michelle Y.}",
note = "Publisher Copyright: {\textcopyright} 2016 IEEE.; 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 ; Conference date: 16-08-2016 Through 20-08-2016",
year = "2016",
month = oct,
day = "13",
doi = "10.1109/EMBC.2016.7591264",
language = "English (US)",
series = "Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "2606--2609",
booktitle = "2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016",
address = "United States",
}