TY - JOUR
T1 - Correlation between reference point indentation and mechanical properties of 3D-printed polymers
AU - Pang, Siyuan
AU - Jasiuk, Iwona
N1 - Publisher Copyright:
© 2023 Author(s).
PY - 2023/8/1
Y1 - 2023/8/1
N2 - Reference point indentation (RPI) is a novel experimental technique designed to evaluate bone quality. This study utilizes two RPI instruments, BioDent and Osteoprobe, to investigate the mechanical responses of several 3D-printed polymers. We correlated the mechanical properties from a tensile test with the RPI parameters obtained from the BioDent and OsteoProbe. In addition, we tested the same polymers five years later (Age 5). The results show that for Age 0 polymers, the elastic modulus is highly correlated with average unloading slope (r = 0.87), first unloading slope (r = 0.85), bone material strength index (BMSi) (r = 0.85), average loading slope (r = 0.82), first indentation distance (r = 0.79), and total indentation distance (r = 0.76). The ultimate stress correlates significantly with first unloading slope (r = 0.85), average unloading slope (r = 0.83), BMSi (r = 0.81), first indentation distance (r = 0.73), average loading slope (r = 0.71), and total indentation distance (r = 0.70). The elongation has no significant correlation with the RPI parameters except with the average creep indentation distance (r = 0.60). For Age 5 polymers, correlations between mechanical properties and RPI parameters are low. This study illustrates the potential of RPI to assess the mechanical properties of polymers nondestructively with simple sample requirements. Furthermore, for the first time, 3D-printed polymers and aged polymers are investigated with RPI.
AB - Reference point indentation (RPI) is a novel experimental technique designed to evaluate bone quality. This study utilizes two RPI instruments, BioDent and Osteoprobe, to investigate the mechanical responses of several 3D-printed polymers. We correlated the mechanical properties from a tensile test with the RPI parameters obtained from the BioDent and OsteoProbe. In addition, we tested the same polymers five years later (Age 5). The results show that for Age 0 polymers, the elastic modulus is highly correlated with average unloading slope (r = 0.87), first unloading slope (r = 0.85), bone material strength index (BMSi) (r = 0.85), average loading slope (r = 0.82), first indentation distance (r = 0.79), and total indentation distance (r = 0.76). The ultimate stress correlates significantly with first unloading slope (r = 0.85), average unloading slope (r = 0.83), BMSi (r = 0.81), first indentation distance (r = 0.73), average loading slope (r = 0.71), and total indentation distance (r = 0.70). The elongation has no significant correlation with the RPI parameters except with the average creep indentation distance (r = 0.60). For Age 5 polymers, correlations between mechanical properties and RPI parameters are low. This study illustrates the potential of RPI to assess the mechanical properties of polymers nondestructively with simple sample requirements. Furthermore, for the first time, 3D-printed polymers and aged polymers are investigated with RPI.
UR - http://www.scopus.com/inward/record.url?scp=85170409929&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85170409929&partnerID=8YFLogxK
U2 - 10.1063/5.0149701
DO - 10.1063/5.0149701
M3 - Article
C2 - 38065188
AN - SCOPUS:85170409929
SN - 0034-6748
VL - 94
JO - Review of Scientific Instruments
JF - Review of Scientific Instruments
IS - 8
M1 - 085118
ER -