TY - JOUR
T1 - Correlation analyses of phytochemical composition, chemical, and cellular measures of antioxidant activity of broccoli (Brassica oleracea L. Var. italica)
AU - Eberhardt, Marian V.
AU - Kobira, Kanta
AU - Keck, Anna Sigrid
AU - Juvik, John A.
AU - Jeffery, Elizabeth H.
PY - 2005/9/21
Y1 - 2005/9/21
N2 - Chemical measures of antioxidant activity within the plant, such as the oxygen radical absorbance capacity (ORAC) assay, have been reported for many plant-based foods. However, the extent to which chemical measures relate to cellular measures of oxidative stress is unclear. The natural variation in the phytochemical content of 22 broccoli genotypes was used to determine correlations among chemical composition (carotenoids, tocopherols and polyphenolics), chemical antioxidant activity (ORAC), and measures of cellular antioxidation [prevention of DNA oxidative damage and of oxidation of the biomarker dichlorofluorescein (DCFH) in HepG2 cells] using hydrophilic and lipophilic extracts of broccoli. For lipophilic extracts, ORAC (ORAC-L) correlated with inhibition of cellular oxidation of DCFH (DCFH-L, r = 0.596, p = 0.006). Also, DNA damage in the presence of the lipophilic extract was negatively correlated with both chemical and cellular measures of antioxidant activity as measured by ORAC-L (r = -0.705, p = 0.015) and DCFH-L (r = -0.671, p = 0.048), respectively. However, no correlations were observed for hydrophilic (-H) extracts, except between polyphenol content and ORAC (ORAC-H; r = 0.778, p < 0.001). Inhibition of cellular oxidation by hydrophilic extracts (DCFH-H) and ORAC-H were ∼ 8- and 4-fold greater than DCFH-L and ORAC-L, respectively. Whether ORAC-H has more biological relevance than ORAC-L because of its magnitude or whether ORAC-L bears more biological relevance because it relates to cellular estimates of antioxidant activity remains to be determined. Chemical estimates of antioxidant capacity within the plant may not accurately reflect the complex nature of the full antioxidant activity of broccoli extracts within cells.
AB - Chemical measures of antioxidant activity within the plant, such as the oxygen radical absorbance capacity (ORAC) assay, have been reported for many plant-based foods. However, the extent to which chemical measures relate to cellular measures of oxidative stress is unclear. The natural variation in the phytochemical content of 22 broccoli genotypes was used to determine correlations among chemical composition (carotenoids, tocopherols and polyphenolics), chemical antioxidant activity (ORAC), and measures of cellular antioxidation [prevention of DNA oxidative damage and of oxidation of the biomarker dichlorofluorescein (DCFH) in HepG2 cells] using hydrophilic and lipophilic extracts of broccoli. For lipophilic extracts, ORAC (ORAC-L) correlated with inhibition of cellular oxidation of DCFH (DCFH-L, r = 0.596, p = 0.006). Also, DNA damage in the presence of the lipophilic extract was negatively correlated with both chemical and cellular measures of antioxidant activity as measured by ORAC-L (r = -0.705, p = 0.015) and DCFH-L (r = -0.671, p = 0.048), respectively. However, no correlations were observed for hydrophilic (-H) extracts, except between polyphenol content and ORAC (ORAC-H; r = 0.778, p < 0.001). Inhibition of cellular oxidation by hydrophilic extracts (DCFH-H) and ORAC-H were ∼ 8- and 4-fold greater than DCFH-L and ORAC-L, respectively. Whether ORAC-H has more biological relevance than ORAC-L because of its magnitude or whether ORAC-L bears more biological relevance because it relates to cellular estimates of antioxidant activity remains to be determined. Chemical estimates of antioxidant capacity within the plant may not accurately reflect the complex nature of the full antioxidant activity of broccoli extracts within cells.
KW - Antioxidant
KW - Brassica oleracea L. var. Italica
KW - Broccoli
KW - Comet assay
KW - Dichlorofluorescein
KW - ORAC
KW - Quinone reductase
KW - Thioredoxin reductase
UR - http://www.scopus.com/inward/record.url?scp=26244446386&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=26244446386&partnerID=8YFLogxK
U2 - 10.1021/jf051495k
DO - 10.1021/jf051495k
M3 - Article
C2 - 16159168
AN - SCOPUS:26244446386
SN - 0021-8561
VL - 53
SP - 7421
EP - 7431
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
IS - 19
ER -