Abstract
Solid–gas interactions at electrode surfaces determine the efficiency of solid-oxide fuel cells and electrolyzers. Here, the correlation between surface–gas kinetics and the crystal orientation of perovskite electrodes is studied in the model system La0.8Sr0.2Co0.2Fe0.8O3. The gas-exchange kinetics are characterized by synthesizing epitaxial half-cell geometries where three single-variant surfaces are produced [i.e., La0.8Sr0.2Co0.2Fe0.8O3/La0.9Sr0.1Ga0.95Mg0.05O3−δ/SrRuO3/SrTiO3 (001), (110), and (111)]. Electrochemical impedance spectroscopy and electrical conductivity relaxation measurements reveal a strong surface-orientation dependency of the gas-exchange kinetics, wherein (111)-oriented surfaces exhibit an activity >3-times higher as compared to (001)-oriented surfaces. Oxygen partial pressure ((Formula presented.))-dependent electrochemical impedance spectroscopy studies reveal that while the three surfaces have different gas-exchange kinetics, the reaction mechanisms and rate-limiting steps are the same (i.e., charge-transfer to the diatomic oxygen species). First-principles calculations suggest that the formation energy of vacancies and adsorption at the various surfaces is different and influenced by the surface polarity. Finally, synchrotron-based, ambient-pressure X-ray spectroscopies reveal distinct electronic changes and surface chemistry among the different surface orientations. Taken together, thin-film epitaxy provides an efficient approach to control and understand the electrode reactivity ultimately demonstrating that the (111)-surface exhibits a high density of active surface sites which leads to higher activity.
Original language | English (US) |
---|---|
Article number | 2100977 |
Journal | Advanced Materials |
Volume | 33 |
Issue number | 20 |
DOIs | |
State | Published - May 20 2021 |
Externally published | Yes |
Keywords
- electrochemical reactions
- epitaxial thin films
- half-cells
- perovskite oxides
- surface engineering
ASJC Scopus subject areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering