Abstract
We report the realization of correlated, density-dependent tunneling for fermionic K40 atoms trapped in an optical lattice. By appropriately tuning the frequency difference between a pair of Raman beams applied to a spin-polarized gas, simultaneous spin transitions and tunneling events are induced that depend on the relative occupations of neighboring lattice sites. This correlated spin-flip tunneling (CSFT) is spectroscopically resolved using gases prepared in opposite spin states, and the inferred Hubbard interaction energy is compared with a tight-binding prediction. We measure the doublons created by the laser-induced correlated tunneling process using loss induced by light-assisted collisions. Furthermore, by controllably introducing vacancies to a spin-polarized gas, we demonstrate that correlated tunneling is suppressed when neighboring lattice sites are unoccupied. We explain how the CSFT quench implemented here prepares and evolves a large number of resonating-valence-bond (RVB) singlets in a Hubbard model, thus allowing exploration of RVB dynamics.
Original language | English (US) |
---|---|
Article number | 023623 |
Journal | Physical Review A |
Volume | 98 |
Issue number | 2 |
DOIs | |
State | Published - Aug 20 2018 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics