CORE: Automatic molecule optimization using copy & refine strategy

Tianfan Fu, Cao Xiao, Jimeng Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Molecule optimization is about generating molecule Y with more desirable properties based on an input molecule X. The state-of-the-art approaches partition the molecules into a large set of substructures S and grow the new molecule structure by iteratively predicting which substructure from S to add. However, since the set of available substructures S is large, such an iterative prediction task is often inaccurate especially for substructures that are infrequent in the training data. To address this challenge, we propose a new generating strategy called “Copy&Refine” (CORE), where at each step the generator first decides whether to copy an existing substructure from input X or to generate a new substructure, then the most promising substructure will be added to the new molecule. Combining together with scaffolding tree generation and adversarial training, CORE can significantly improve several latest molecule optimization methods in various measures including drug likeness (QED), dopamine receptor (DRD2) and penalized LogP. We tested CORE and baselines using the ZINC database and CORE obtained up to 11% and 21% relatively improvement over the baselines on success rate on the complete test set and the subset with infrequent substructures, respectively.

Original languageEnglish (US)
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAmerican Association for Artificial Intelligence (AAAI) Press
Pages638-645
Number of pages8
ISBN (Electronic)9781577358350
DOIs
StatePublished - 2020
Externally publishedYes
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: Feb 7 2020Feb 12 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York
Period2/7/202/12/20

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'CORE: Automatic molecule optimization using copy & refine strategy'. Together they form a unique fingerprint.

Cite this