CoPur: Certifiably Robust Collaborative Inference via Feature Purification

Jing Liu, Chulin Xie, Oluwasanmi O. Koyejo, Bo Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Collaborative inference leverages diverse features provided by different agents (e.g., sensors) for more accurate inference. A common setup is where each agent sends its embedded features instead of the raw data to the Fusion Center (FC) for joint prediction. In this setting, we consider inference phase attacks when a small fraction of agents is compromised. The compromised agent either does not send embedded features to the FC or sends arbitrary embedded features. To address this, we propose a certifiably robust COllaborative inference framework via feature PURification (CoPur), by leveraging the block-sparse nature of adversarial perturbations on the feature vector, as well as redundancy across the embedded features (by assuming the overall features lie on an underlying lower dimensional manifold). We theoretically show that the proposed feature purification method can robustly recover the true feature vector, despite adversarial corruptions and/or incomplete observations. We also propose and test an untargeted distributed feature-flipping attack, which is agnostic to the model, training data, label, as well as features held by other agents, and is shown to be effective in attacking state-of-the-art defenses. Experiments on ExtraSensory and NUS-WIDE datasets show that CoPur significantly outperforms existing defenses in terms of robustness against targeted and untargeted adversarial attacks.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period11/28/2212/9/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'CoPur: Certifiably Robust Collaborative Inference via Feature Purification'. Together they form a unique fingerprint.

Cite this