Coordinated mapping of Li+ flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode

Zachary T. Gossage, Jingshu Hui, Dipobrato Sarbapalli, Joaquín Rodríguez-López

Research output: Contribution to journalArticlepeer-review


Interphases formed at battery electrodes are key to enabling energy dense charge storage by acting as protection layers and gatekeeping ion flux into and out of the electrodes. However, our current understanding of these structures and how to control their properties is still limited due to their heterogenous structure, dynamic nature, and lack of analytical techniques to probe their electronic and ionic properties in situ. In this study, we used a multi-functional scanning electrochemical microscopy (SECM) technique based on an amperometric ion-selective mercury disc-well (HgDW) probe for spatially-resolving changes in interfacial Li+ during solid electrolyte interphase (SEI) formation and for tracking its relationship to the electronic passivation of the interphase. We focused on multi-layer graphene (MLG) as a model graphitic system and developed a method for ion-flux mapping based on pulsing the substrate at multiple potentials with distinct behavior (e.g. insertion-deinsertion). By using a pulsed protocol, we captured the localized uptake of Li+ at the forming SEI and during intercalation, creating activity maps along the edge of the MLG electrode. On the other hand, a redox probe showed passivation by the interphase at the same locations, thus enabling correlations between ion and electron transfer. Our analytical method provided direct insight into the interphase formation process and could be used for evaluating dynamic interfacial phenomena and improving future energy storage technologies.

Original languageEnglish (US)
Pages (from-to)2631-2638
Number of pages8
Issue number7
StatePublished - Apr 7 2020

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Environmental Chemistry
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Coordinated mapping of Li<sup>+</sup> flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode'. Together they form a unique fingerprint.

Cite this