Cooperative Inverse Decision Theory for Uncertain Preferences

Zachary Robertson, Hantao Zhang, Oluwasanmi Koyejo

Research output: Contribution to journalConference articlepeer-review


Inverse decision theory (IDT) aims to learn a performance metric for classification by eliciting expert classifications on examples. However, elicitation in practical settings may require many classifications of potentially ambiguous examples. To improve the efficiency of elicitation, we propose the cooperative inverse decision theory (CIDT) framework as a formalization of the performance metric elicitation problem. In cooperative inverse decision theory, the expert and a machine play a game where both are rewarded according to the expert's performance metric, but the machine does not initially know what this function is. We show that optimal policies in this framework produce active learning that leads to an exponential improvement in sample complexity over previous work. One of our key findings is that a broad class of sub-optimal experts can be represented as having uncertain preferences. We use this finding to show such experts naturally fit into our proposed framework extending inverse decision theory to efficiently deal with decision data that is sub-optimal due to noise, conflicting experts, or systematic error.

Original languageEnglish (US)
Pages (from-to)5854-5868
Number of pages15
JournalProceedings of Machine Learning Research
StatePublished - 2023
Event26th International Conference on Artificial Intelligence and Statistics, AISTATS 2023 - Valencia, Spain
Duration: Apr 25 2023Apr 27 2023

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability


Dive into the research topics of 'Cooperative Inverse Decision Theory for Uncertain Preferences'. Together they form a unique fingerprint.

Cite this