Cooperative control with adaptive graph laplacians for spacecraft formation flying

Insu Chang, Soon Jo Chung, Lars Blackmore

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper investigates exact nonlinear dynamics and cooperative control for spacecraft formation flying with Earth oblateness (J2 perturbation) and atmospheric drag effects. The nonlinear dynamics for chief and deputy motions are derived by using Gauss' variational equation and the Euler-Lagrangian formulation, respectively. The proposed cooperative control employs adaptive time-varying Laplacian gains. The tracking and diffusive coupling gains are adapted by the synchronization/ tracking errors and distance-based connectivity, thereby defining a time-varying network topology. Moreover, the proposed method relaxes the network structure requirement and permits an unbalanced graph. Nonlinear stability is proven by contraction analysis and incremental input-to-state stability. Numerical examples show the effectiveness of the proposed method.

Original languageEnglish (US)
Title of host publication2010 49th IEEE Conference on Decision and Control, CDC 2010
Pages4926-4933
Number of pages8
DOIs
StatePublished - 2010
Event2010 49th IEEE Conference on Decision and Control, CDC 2010 - Atlanta, GA, United States
Duration: Dec 15 2010Dec 17 2010

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0191-2216

Other

Other2010 49th IEEE Conference on Decision and Control, CDC 2010
CountryUnited States
CityAtlanta, GA
Period12/15/1012/17/10

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint Dive into the research topics of 'Cooperative control with adaptive graph laplacians for spacecraft formation flying'. Together they form a unique fingerprint.

Cite this