Convolutional-Recurrent Neural Networks for Speech Enhancement

Han Zhao, Shuayb Zarar, Ivan Tashev, Chin Hui Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose an end-to-end model based on convolutional and recurrent neural networks for speech enhancement. Our model is purely data-driven and does not make any assumptions about the type or the stationarity of the noise. In contrast to existing methods that use multilayer perceptrons (MLPs), we employ both convolutional and recurrent neural network architectures. Thus, our approach allows us to exploit local structures in both the frequency and temporal domains. By incorporating prior knowledge of speech signals into the design of model structures, we build a model that is more data-efficient and achieves better generalization on both seen and unseen noise. Based on experiments with synthetic data, we demonstrate that our model outperforms existing methods, improving PESQ by up to 0.6 on seen noise and 0.64 on unseen noise.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2401-2405
Number of pages5
ISBN (Print)9781538646588
DOIs
StatePublished - Sep 10 2018
Externally publishedYes
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: Apr 15 2018Apr 20 2018

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Other

Other2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
Country/TerritoryCanada
CityCalgary
Period4/15/184/20/18

Keywords

  • Convolutional neural networks
  • Recurrent neural networks
  • Regression model
  • Speech enhancement

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Convolutional-Recurrent Neural Networks for Speech Enhancement'. Together they form a unique fingerprint.

Cite this