Convolutional Image Captioning

Jyoti Aneja, Aditya Deshpande, Alexander G. Schwing

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Image captioning is an important task, applicable to virtual assistants, editing tools, image indexing, and support of the disabled. In recent years significant progress has been made in image captioning, using Recurrent Neural Networks powered by long-short-term-memory (LSTM) units. Despite mitigating the vanishing gradient problem, and despite their compelling ability to memorize dependencies, LSTM units are complex and inherently sequential across time. To address this issue, recent work has shown benefits of convolutional networks for machine translation and conditional image generation [9, 34, 35]. Inspired by their success, in this paper, we develop a convolutional image captioning technique. We demonstrate its efficacy on the challenging MSCOCO dataset and demonstrate performance on par with the LSTM baseline [16], while having a faster training time per number of parameters. We also perform a detailed analysis, providing compelling reasons in favor of convolutional language generation approaches.

Original languageEnglish (US)
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages5561-5570
Number of pages10
ISBN (Electronic)9781538664209
DOIs
StatePublished - Dec 14 2018
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: Jun 18 2018Jun 22 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
CountryUnited States
CitySalt Lake City
Period6/18/186/22/18

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Convolutional Image Captioning'. Together they form a unique fingerprint.

Cite this