Conversational Question Answering with Language Models Generated Reformulations over Knowledge Graph

Lihui Liu, Blaine Hill, Boxin Du, Fei Wang, Hanghang Tong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Conversational question answering (ConvQA) over knowledge graphs (KGs) involves answering multi-turn natural language questions about information contained in a KG. State-of-the-art methods of ConvQA often struggle with inexplicit question-answer pairs. These inputs are easy for human beings to understand given a conversation history, but hard for a machine to interpret, which can degrade ConvQA performance. To address this issue, we propose a reinforcement learning (RL) based model, CORNNET, which utilizes question reformulations generated by large language models (LLMs) to improve ConvQA performance. CORNNET adopts a teacher-student architecture where a teacher model learns question representations using human writing reformulations, and a student model to mimic the teacher model's output via reformulations generated by LLMs. The learned question representation is then used by a RL model to locate the correct answer in a KG. Extensive experimental results show that CORNNET outperforms state-of-the-art ConvQA models.

Original languageEnglish (US)
Title of host publicationThe 62nd Annual Meeting of the Association for Computational Linguistics
Subtitle of host publicationFindings of the Association for Computational Linguistics, ACL 2024
EditorsLun-Wei Ku, Andre Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages839-850
Number of pages12
ISBN (Electronic)9798891760998
DOIs
StatePublished - 2024
EventFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, Thailand
Duration: Aug 11 2024Aug 16 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

ConferenceFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityHybrid, Bangkok
Period8/11/248/16/24

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Conversational Question Answering with Language Models Generated Reformulations over Knowledge Graph'. Together they form a unique fingerprint.

Cite this