Controlling topological entanglement in engineered protein hydrogels with a variety of thiol coupling chemistries

Shengchang Tang, Bradley D. Olsen

Research output: Contribution to journalArticlepeer-review

Abstract

Topological entanglements between polymer chains are achieved in associating protein hydrogels through the synthesis of high molecular weight proteins via chain extension using a variety of thiol coupling chemistries, including disulfide formation, thiol-maleimide, thiol-bromomaleimide and thiol-ene. Coupling of cysteines via disulfide formation results in the most pronounced entanglement effect in hydrogels, while other chemistries provide versatile means of changing the extent of entanglement, achieving faster chain extension, and providing a facile method of controlling the network hierarchy and incorporating stimuli responsivities. The addition of trifunctional coupling agents causes incomplete crosslinking and introduces branching architecture to the protein molecules. The high-frequency plateau modulus and the entanglement plateau modulus can be tuned by changing the ratio of difunctional chain extender to the trifunctional branching unit. Therefore, these chain extension reactions show promise in delicately controlling the relaxation and mechanical properties of engineered protein hydrogels in ways that complement their design through genetic engineering.

Original languageEnglish (US)
Article number23
JournalFrontiers in Chemistry
Volume2
Issue numberMAY
DOIs
StatePublished - 2014

Keywords

  • Branching
  • Coiled-coil
  • Engineered protein hydrogels
  • Entanglement
  • Thiol-X click chemistries

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint Dive into the research topics of 'Controlling topological entanglement in engineered protein hydrogels with a variety of thiol coupling chemistries'. Together they form a unique fingerprint.

Cite this